Ya Deng's Homepage



Information

Chargé de Recherche au CNRS
Institut Élie Cartan de Lorraine
Université de Lorraine
Email: ya.deng@math.cnrs.fr 

My research subjects contain complex algebraic-analytic geometry, complex hyperbolicity, non-abelian Hodge theories in both Archimedean and non-Archimedean settings, Nevanlinna theory, and the interplay among them. My current interest is harmonic mapping to Euclidean buildings, linear Shafarevich conjecture, Singer-Hopf conjecture (sign of Euler characteristic), hyperbolicity of algebraic varieties via representation of fundamental groups, algebro-geometric properties of varieties with large/big fundamental groups.

Ya Deng

Photo by Patrick Tuen Wai Ng at HongKong, Oct 2023



Brief CV
  1. 02.2021-             Chargé de Recherche au CNRS à l'Institut Élie Cartan de Lorraine (l'Université de Lorraine, Nancy).
  2. 09.2019-01.2021   Postdoc à l'Institut des Hautes Études Scientifiques (l'Université Paris-Saclay)
  3. 10.2018-09.2019   Postdoc in the University of Göteborg
  4. 08.2017-08.2018   Postdoc à l'Institut de Recherche Mathématique Avancée (l'Université de Strasbourg)
  5. 09.2014-07.2017   PhD à l'Institut Fourier (l'Université Grenoble Alpes)

Publication
  1. Vanishing theorem for tame harmonic bundles via \(L^2\)-cohomology. (joint work with Feng HAO) arXiv:1912.02586. To appear in Compos. Math. Abstract

  2. On the nilpotent orbit theorem of complex variation of Hodge structures.   Forum of Mathematics, Sigma , Volume 11 , 2023 , e106 link   arXiv:2203.04266 Abstract

  3. Big Picard theorems and algebraic hyperbolicity for varieties admitting a variation of Hodge structures.   L'Épijournal de Géométrie Algébrique, April 24, 2023, Volume 7 arXiv:2001.04426 Abstract Oberwolfach report

  4. A characterization of complex quasi-projective manifolds uniformized by unit balls. (with an appendix written jointly with Benoît Cadorel) ).   Math. Ann. 384, 1833–1881 (2022) link   arXiv:2006.16178 Abstract

  5. On the hyperbolicity of base spaces for maximal variational families of smooth projective varieties. (with an appendix by Dan Abramovich).   J. Eur. Math. Soc. (JEMS) Vol. 24, No. 7PP. 2315–2359 link  arXiv:1806.01666 Abstract
  6. Picard theorems for moduli spaces of polarized varieties. (joint work with S. Lu, R. Sun and K. Zuo) .  To appear in Math. Ann.  arXiv:1911.02973 Abstract

  7. Kobayashi hyperbolicity of the complements of general hypersurfaces of high degrees.  (joint work with Damian Brotbek) .  Geometric And Functional Analysis (GAFA), June 2019, Volume 29, Issue 3, pp 690–750.  link arXiv:1804.01719 Abstract
  8. On the Diverio-Trapani Conjecture . Ann. Scient. Éc. Norm. Sup. 4 e série, t. 53, 2020, p. 787 à 814.  link  arXiv:1703.07560 Abstract
  9. On the positivity of the logarithmic cotangent bundle. (joint work with Damian Brotbek)   Annales de l'Institut Fourier, Volume 68 (2018) no. 7, p. 3001-3051 (en l'honneur du professeur Jean-Pierre Demailly). link  arXiv:1712.09887. Abstract
  10. Applications of the Ohsawa-Takegoshi Extension Theorem to Direct Image Problems. Int. Math. Res. Not. IMRN,rnaa018 Abstract

  11. Transcendental morse inequality and generalized Okounkov bodies algebraic geometry. Algebraic Geometry 4 (2) (2017) 177–202. Link Abstract
  12. Simpson correspondence for semistable Higgs bundles over Kähler manifolds. hal-02391629 . Pure and Applied Mathematics Quarterly Volume 17, Number 5, 1899-1911, 2021. link Abstract

  13. Kobayashi measure hyperbolicity for singular directed varieties of general type. Comptes Rendus Mathématique, Volume 354, Issue 9, (2016), Pages 920-924. Link Abstract

Preprints
  1. Linear Singer-Hopf Conjecture. (joint work with Botong Wang) arXiv:2405.12012 Abstract

  2. Linear Shafarevich Conjecture in Positive Characteristic, Hyperbolicity, and Applications. (joint work with Katsutoshi Yamanoi) arXiv:2403.16199 Abstract

  3. Quasi-finiteness of morphisms of character varieties. (joint work with Yuan Liu) arXiv:2311.13299 Abstract

  4. Reductive Shafarevich Conjecture. (joint work with Katsutoshi Yamanoi, Ludmil Katzarkov) arXiv:2306.03070 Abstract

  5. Hyperbolicity and fundamental groups of complex quasi-projective varieties. (joint work with Benoit Cadorel and Katsutoshi Yamanoi) arXiv:2212.12225 Oberwolfach report Abstract

  6. Pluriharmonic maps into buildings and symmetric differentials. (joint work with D. Brotbek, G. Daskalopoulos and C. Mese) arXiv:2206.11835 Abstract

  7. Picard hyperbolicity for manifolds admitting nilpotent harmonic bundles. (joint work with Benoît Cadorel). arXiv:2107.07550 Abstract


Other preprints
  1. Big Picard theorem for moduli spaces of polarized manifolds. arXiv:1912.11442. Part of this preprint has been merged into Preprint 12. Abstract

  2. Pseudo Kobayashi hyperbolicity of base spaces of families of minimal projective manifolds with maximal variation. arXiv:1809.05891 This preprint has been merged into Publication 1. Abstract

  3. Hyperbolicity of coarse moduli spaces and isotriviality for certain families. arXiv:1908.08372 Abstract

  4. Hyperbolicity of bases of log Calabi-Yau families. arXiv:1901.04423 hal-02266744 Abstract


Miscellaneous

Memoirs

Grant
ANR JCJC Grant: Kähler manifolds with non-positive curvature : families and special subvarieties. 2021-2025 (Homepage)

Members: Henri Guenancia (CNRS-Toulouse, project coordinator), Junyan Cao (Nice), Benoit Cadorel (Nancy), Ya Deng (CNRS-Nancy)


Recent and upcoming talks


Events coorganized


Seminar
Séminaire de géométrie complexe a l'IECL Lien.
My Webpage

Having Fun! 😊

Interesting photo 1 Interesting photo 2