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Abstract. Given a complex smooth quasi-projective variety 𝑋 , a reductive algebraic group 𝐺
defined over some non-archimedean local field 𝐾 and a Zariski dense representation 𝜚 : 𝜋1 (𝑋) →
𝐺 (𝐾), we construct a 𝜚-equivariant pluriharmonic map from the universal cover of 𝑋 into the Bruhat-
Tits building Δ(𝐺) of 𝐺, with appropriate asymptotic behavior. We also establish the uniqueness
of such a pluriharmonic map in a suitable sense, and provide a geometric characterization of these
equivariant maps. This paper builds upon and extends previous work by the authors jointly with
G. Daskalopoulos and D. Brotbek.
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0. Introduction

0.1. Main results. We first establish the following existence theorem of equivariant pluriharmonic
maps to Bruhat-Tits buildings.
Theorem A. Let 𝑋 be a smooth quasi-projective variety and let𝐺 be a reductive group defined over
a non-archidemean local field 𝐾 . Let Δ(𝐺) be the enlarged Bruhat-Tits building of 𝐺. Denote by
𝜋𝑋 : 𝑋 → 𝑋 the universal covering map. If 𝜚 : 𝜋1(𝑋) → 𝐺 (𝐾) is a Zariski dense representation,
then the following statements hold:

(i) There exists a 𝜚-equivariant pluriharmonic map 𝑢̃ : 𝑋 → Δ(𝐺) with logarithmic energy
growth.

(ii) 𝑢̃ is harmonic with respect to any Kähler metric on 𝑋 .
(iii) Let 𝑓 : 𝑌 → 𝑋 be a morphism from a smooth quasi-projective variety 𝑌 . Denote by

𝑓 : 𝑌 → 𝑋 the lift of 𝑓 between the universal covers of 𝑌 and 𝑋 . Then the 𝑓 ∗𝜚-equivariant
map 𝑢̃ ◦ 𝑓 : 𝑌 → Δ(𝐺) is pluriharmonic and has logarithmic energy growth.

(iv) There is a proper Zariski closed subset Ξ of 𝑋 such that the singular set S(𝑢̃) of 𝑢̃ defined in
Definition 1.2 is contained in 𝜋−1

𝑋
(Ξ).

Note that when 𝑋 is a compact Kähler manifold, Theorems A.(i) to A.(iii) were established
by Gromov-Schoen in [GS92] and Theorem A.(iv) was proved by Eyssidieux in [Eys04]. In the
case where 𝐺 is semisimple, Theorems A.(i) to A.(iii) were proven by the authors with Brotbek
in [BDDM22, Theorem A].

In general, the uniqueness of the equivariant pluriharmonic map in Theorem A is not guaranteed,
although it can be established under additional assumptions on the representation (cf. [DM23b,
BDDM22]). However, we prove the uniqueness in a suitable local setting over a dense open subset
of 𝑋 that has full Lebesgue measure.
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Theorem B. Let 𝑋 be a smooth quasi-projective variety and let𝐺 be a reductive group defined over
a non-archidemean local field 𝐾 . For a representation 𝜚 : 𝜋1(𝑋) → 𝐺 (𝐾), if 𝑢̃0, 𝑢̃1 : 𝑋 → Δ(𝐺)
are two 𝜚-equivariant pluriharmonic maps with logarithmic energy growth, then for almost every
point 𝑥 ∈ 𝑋 , it has an open neighborhood Ω such that
(i) there exists an apartment 𝐴 of Δ(𝐺) that contains both 𝑢̃0(Ω) and 𝑢̃1(Ω);
(ii) The map 𝑢̃0 |Ω : Ω → 𝐴 is a translate of 𝑢̃1 |Ω : Ω → 𝐴.

It is worthwhile mentioning that Theorems A and B were established by Corlette-Simpson
[CS08] for the case where𝐺 = PSL2 and the representation 𝜚 has quasi-unipotent monodromies at
infinity. In this setting, the Bruhat-Tits building of 𝐺 is a tree, and the energy of the 𝜚-equivariant
pluriharmonic map 𝑢̃ is proven to be finite.

Finally, we give a geometric characterization of pluriharmonic maps with logarithmic energy
growth in terms of spectral covers.

Theorem C. Let 𝑋 , 𝜚, 𝐺 and 𝑢̃ be as in Theorem A. Let 𝑋 be a smooth projective compactification
of 𝑋 such that Σ := 𝑋\𝑋 is a simple normal crossing divisor. Then we have the following:
(i) The 𝜚-equivariant pluriharmonic map 𝑢̃ induces a multivalued logarithmic 1-form 𝜂 on the

log pair (𝑋, Σ), satisfying the properties in Lemma 3.8.(ii).
(ii) Such 𝜂 does not depend on the choice of 𝑢̃; i.e., if 𝑣̃ is another 𝜚-equivariant pluriharmonic

map with logarithmic energy growth, the multivalued logarithmic 1-form induced by 𝑣̃ is 𝜂.
(iii) There exists a ramified Galois cover 𝜋 : 𝑋sp → 𝑋 such that 𝜋∗𝜂 becomes single-valued; i.e.,

𝜋∗𝜂 = {𝜔1, . . . , 𝜔𝑚} ⊂ 𝐻0(𝑋sp, 𝜋∗Ω
𝑋
(logΣ)).

(iv) Denote byΣ1 := 𝑋sp\𝑋sp. Let 𝜇 : 𝑌 → 𝑋sp be a log resolution of (𝑋sp, Σ1), withΣ𝑌 := 𝜇−1(Σ1)
a simple normal crossing divisor. Then {𝜇∗𝜔1, . . . , 𝜇

∗𝜔𝑚} ∈ 𝐻0(𝑌,Ω
𝑌
(logΣ𝑌 )) are pure

imaginary, i.e., the residue of every 𝜇∗𝜔 𝑗 at each irreducible component of Σ𝑌 is a pure
imaginary number.

We mention that Theorem C.(iv) is analogous to Mochizuki’s notion of pure imaginary harmonic
bundles induced by pluriharmonic maps to symmetric spaces associated with complex semisimple
local systems over quasi-projective varieties (cf. [Moc07]). In our case, however, a spectral cover
is required to transform the multivalued logarithmic 1-form induced by the pluriharmonic map into
single-valued logarithmic 1-forms.

In this paper, we assume that 𝐾 is a non-archimedean local field endowed with a discrete non-
archimedean valuation. On the other hand, a recent paper by C. Breiner, B. Dees, and the second
author [BDM24] introduces techniques to study the case for a general non-archimedean valuation
local field 𝐿. In the sequel, we will show that Theorem A, Theorem B, and Theorem C generalize
to the case where Δ(𝐺) is a Bruhat-Tits building associated with a reductive group defined over
any non-archimedean field.

0.2. Notation and Convention.
(a) Unless otherwise specified, algebraic varieties are assumed to be connected and defined over

the field of complex numbers.
(b) Let𝐺 be a reductive group defined over a non-archimedean local field 𝐾 . We denote by Δ(𝐺)

the Bruhat-Tits building of𝐺, which is a non-positively curved (NPC for short) space. Denote
by 𝑑 (•, •) the distance function on Δ(𝐺). Denote by D𝐺 the derived group of 𝐺, which is
semisimple.

(c) For a complex space 𝑋 , denote by 𝑋norm the normalization of 𝑋 .
(d) A log smooth pair (𝑋, Σ) consists of a smooth projective variety 𝑋 and a simple normal

crossing divisor Σ. We denote by 𝑋 := 𝑋\Σ, and 𝜋𝑋 : 𝑋 → 𝑋 the universal covering map.
(e) Say a function 𝑓 (resp. a 1-form 𝜂) on 𝑋 descends on 𝑋 if there exists a function 𝑓 (resp. a

1-form 𝜂) on 𝑋 such that 𝑓 = 𝜋∗
𝑋
𝑓 (resp. 𝜂 = 𝜋∗

𝑋
𝜂).

(f) Let 𝑋 be a smooth projective variety. A line bundle 𝐿 on 𝑋 is sufficiently ample if there exists
a projective embedding 𝜄 : 𝑋 ↩→ P𝑁 such that 𝐿 = 𝜄∗OP𝑁 (𝑑) for some 𝑑 ⩾ 3.

(g) A linear representation 𝜚 : 𝜋1(𝑋) → GL𝑁 (𝐾) with 𝐾 some field is called reductive if the
Zariski closure of 𝜚(𝜋1(𝑋)) is a reductive algebraic group over 𝐾 .
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If 𝑌 is a closed smooth subvariety of 𝑋 , we denote by 𝜚𝑌 : 𝜋1(𝑌 ) → 𝐺 (𝐾) the composition
of the natural homomorphism 𝜋1(𝑌 ) → 𝜋1(𝑋) and 𝜚.

(h) Denote by D the unit disk in C, and by D∗ the punctured unit disk. We write D𝑟 := {𝑧 ∈ C |
|𝑧 | < 𝑟}, D∗

𝑟 := {𝑧 ∈ C | 0 < |𝑧 | < 𝑟}, and D𝑟1,𝑟2 := {𝑧 ∈ C | 𝑟1 < |𝑧 | < 𝑟2}.

Acknowledgment. The first author is supported in part by ANR-21-CE40-0010. The second
author is supported in part by NSF DMS-2304697. Part of this research was performed while the
second author was visiting the Mathematical Sciences Research Institute (MSRI), now becoming
the Simons Laufer Mathematical Sciences Institute (SLMath), which is supported by the National
Science Foundation (Grant No. DMS-1928930).

1. Technical preliminary

For more details of this section, we refer the readers to [BDDM22].

1.1. Equivariant maps and sections. Endow 𝑋 with a Kähler metric 𝑔. Let 𝜚 : 𝜋1(𝑋) → 𝐺 (𝐾)
be a representation where 𝐺 is a reductive algebraic group over a non-archimedean local field
𝐾 . The set of all 𝜚-equivariant maps into Δ(𝐺) are in one-to-one correspondence with the set of
all sections of the fiber bundle Π : 𝑋 ×𝜚 Δ(𝐺) → 𝑋 . More precisely, for a 𝜚-equivariant map
𝑓 : 𝑋 → Δ(𝐺), we define a section of Π by setting 𝑓 (𝜋𝑋 (𝑝)) = [(𝑝, 𝑓 (𝑝))], where 𝑝 is any point
in 𝑋 . We shall use this notation throughout this paper.

One can also define the energy density function |∇ 𝑓 |2 of 𝑓 , and we refer the readers to [KS93,
BDDM22] for the definition. Since 𝑓 is equivariant, |∇ 𝑓 |2 on 𝑋 is a 𝜋1(𝑋)-invariant function, and
thus it descends to a function on 𝑋 , denoted by |∇ 𝑓 |2. We also define the energy of 𝑓 in any open
subset𝑈 of 𝑋 by setting

𝐸 𝑓 [𝑈] =
∫
𝑈

|∇ 𝑓 |2𝑑vol𝑔 .(1.1)

1.2. Pullback bundles. Let 𝑓 : 𝑌 → 𝑋 be a morphism between smooth quasi-projective varieties.
Let C be an NPC space, and let 𝜚 : 𝜋1(𝑋) → Isom(C) be a homomorphism. Let 𝑌 be a connected
component of 𝑋 ×𝑋 𝑌 . Then we have the following commuting diagram:

𝑌

𝑌 𝑋

𝑌 𝑋

𝜋
𝑌

𝜋𝑌
𝑓

𝜋̂𝑌 𝜋𝑋

𝑓

It induces a fiber bundle Π̂𝑌 : 𝑌 × 𝑓 ∗ 𝜚 C → 𝑌 , such that one has the following commuting diagram:

𝑌 × 𝑓 ∗ 𝜚 C 𝑋 ×𝜚 C

𝑌 𝑋.

𝐹

Π̂𝑌 Π𝑋

𝑓

By § 1.1, a 𝜚-equivariant map 𝑢̃ : 𝑋 → C corresponds to a section 𝑢 : 𝑋 → 𝑋 ×𝜚 C of Π𝑋. The
composition

𝑢 ◦ 𝑓 : 𝑌 → 𝑋 ×𝜚 C
defines a section of the fiber bundle 𝑌 × 𝑓 ∗ 𝜚 C ≃ 𝑓 ∗(𝑋 ×𝜚 C) → 𝑌 , which in turn defines a 𝑓 ∗𝜚-
equivariant map 𝑢̂ 𝑓 : 𝑌 → C. Define 𝑢 𝑓 := 𝑢̂ 𝑓 ◦ 𝜋𝑌 , which is an 𝑓 ∗𝜚-equivariant map 𝑌 → C. It
defines a section

𝑢 𝑓 : 𝑌 → 𝑌 × 𝑓 ∗ 𝜚 C.
In this paper, we will mainly focus on the special case where 𝑌 is a closed smooth subvariety of 𝑋
and 𝜄 : 𝑌 → 𝑋 is the inclusion map. In this cases, we will use the notation

𝑢𝑌 : 𝑌 → 𝑌 ×𝜚𝑌 C.(1.2)
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in place of 𝑢 𝜄, where 𝜚𝑌 : 𝜋1(𝑌 ) → Isom(C) denotes the composition of 𝜄∗ : 𝜋1(𝑌 ) → 𝜋1(𝑋) and
𝜚. Denote by 𝑢𝑌 : 𝑌 → C the corresponding 𝜚𝑌 -equivariant map.

1.3. Regularity results of Gromov-Schoen. Let 𝑋 be a hermitian manifold and let 𝑢̃ : 𝑋 → Δ(𝐺)
be a 𝜚-equivariant harmonic map. Following § 1.2, let 𝑢 : 𝑋 → 𝑋 ×𝜚 Δ(𝐺) be the section
corresponding to 𝑢̃. We recall some results in [GS92].

Theorem 1.1 ( [GS92], Theorem 2.4). A harmonic map 𝑢̃ : 𝑋 → Δ(𝐺) is locally Lipschitz
continuous. □

Definition 1.2 (Regular points and singular points). A point 𝑥 ∈ 𝑋 is said to be a regular point
of 𝑢̃ if there exists a neighborhood N of 𝑥 and an apartment 𝐴 ⊂ Δ(𝐺) such that 𝑢̃(N) ⊂ 𝐴. A
singular point of 𝑢̃ is a point in 𝑋 that is not a regular point. Note that if 𝑥 ∈ 𝑋 is a regular point
(resp. singular point) of 𝑢̃, then every point of 𝜋−1

𝑋
(𝜋𝑋 (𝑥)) is a regular point (resp. singular point)

of 𝑢̃. We denote by R(𝑢̃) (resp. S(𝑢̃)) the set of all regular points (resp. singular points) of 𝑢̃ and
let R(𝑢) = 𝜋𝑋 (R(𝑢̃)) (resp. S(𝑢) = 𝜋𝑋 (S(𝑢̃))).
Lemma 1.3 ( [GS92], Theorem 6.4). The setS(𝑢) is a closed subset of 𝑋 of Hausdorff codimension
at least two. □

Remark 1.4. B. Dees [Dee22] improved Lemma 1.3 to show that S(𝑢) is (𝑛 − 2)-countably
rectifiable where 𝑛 is the dimension of the domain.

1.4. Logarithmic energy growth. Let 𝑋 be a smooth quasi-projective variety. Let C be an NPC
space. Consider a representation 𝜚 : 𝜋1(𝑋) → Isom(C). We define:

Definition 1.5 (Translation length). For an element 𝛾 ∈ 𝜋1(𝑋), the translation length of 𝜚(𝛾) is
𝐿 𝜚 (𝛾) := inf

𝑃∈C
𝑑 (𝑃, 𝜚(𝛾)𝑃).(1.3)

If there exists 𝑃0 ∈ C such that
inf
𝑃∈C

𝑑 (𝑃, 𝑔𝑃) = 𝑑 (𝑃0, 𝑔𝑃0),

then 𝜚(𝛾) is called a semisimple isometry. For notational simplicity, we write 𝐿𝛾 instead of 𝐿 𝜚 (𝛾)
if no confusion arises.

The definition of logarithmic energy growth of a harmonic map was introduced in [DM23a,
DM24]. A slightly more intrinsic version is provided in [BDDM22], which we recall here.

Definition 1.6 (logarithmic energy growth). Let 𝑋 be a smooth quasi-projective variety, 𝐺 be a
reductive algebraic group over a non-archimedean local field 𝐾 , and let 𝜚 : 𝜋1(𝑋) → 𝐺 (𝐾) be
a Zariski dense representation. A 𝜚-equivariant harmonic map 𝑢̃ : 𝑋 → Δ(𝐺) has logarithmic
energy growth if for any holomorphic map 𝑓 : D∗ → 𝑋 with no essential singularity at the origin
(i.e. for some, thus any, smooth projective compactification 𝑋 of 𝑋 , 𝑓 extends to a holomorphic
map 𝑓 : D → 𝑋), there is a positive constant 𝐶 such that for any 𝑟 ∈ (0, 1

2 ), one has

(1.4) −
𝐿2
𝛾

2𝜋
log 𝑟 ≤ 𝐸𝑢 𝑓 [D𝑟 , 1

2
] ≤ −

𝐿2
𝛾

2𝜋
log 𝑟 + 𝐶,

where 𝐿𝛾 is the translation length of 𝜚(𝛾) with 𝛾 ∈ 𝜋1(𝑋) corresponding to the loop 𝜃 ↦→ 𝑓 ( 1
2𝑒

𝑖 𝜃 ).
1.5. A Bertini-type theorem.

Proposition 1.7 ( [BDDM22, Proposition 2.11]). Let (𝑋,Σ) be a log smooth pair with 𝑛 :=
dim 𝑋 ⩾ 2. Fix a projective embedding 𝜄 : 𝑋 ↩→ P𝑁 and denote by 𝐿 := 𝜄∗OP𝑁 (3). For any
element 𝑠 ∈ 𝐻0(𝑋, 𝐿), we set 𝑌𝑠 := 𝑠−1(0), 𝑌𝑠 := 𝑌𝑠\Σ, and denote by 𝜄𝑌𝑠 : 𝑌𝑠 → 𝑋 the inclusion
map. Let

U = {𝑠 ∈ 𝐻0(𝑋, 𝐿) | 𝑌𝑠 is smooth and 𝑌𝑠 + Σ is a normal crossing divisor}.(1.5)
For 𝑞 ∈ 𝑋 , consider the subspace

𝑉 (𝑞) = {𝑠 ∈ 𝐻0(𝑋, 𝐿) | 𝑠(𝑞) = 0} and U(𝑞) = U ∩𝑉 (𝑞).(1.6)
Then
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(i) The set U(𝑞) is non-empty.
(ii) For any 𝑝, 𝑞 ∈ 𝑋 , and 𝑣 ∈ 𝑇𝑝𝑋 , there exists some 𝑠 ∈ U(𝑞) such that 𝑝 ∈ 𝑌𝑠 and 𝑌𝑠 is tangent

to 𝑣.
(iii) For each 𝑠 ∈ U, 𝜋1(𝑌𝑠) → 𝜋1(𝑋) is surjective.

Note that the last assertion follows from the Lefschetz theorem in [Eyr04].

2. Pluriharmonic maps to Euclidean buildings

In this section we prove Theorem A. As a warm-up, we begin by considering the following
special case.

Lemma 2.1. Let 𝜚 : 𝜋1(C∗) → (R, +) be a representation. Consider exp : C → C∗ as the
universal covering map. Then there exists a 𝜚-equivariant pluriharmonic map 𝑢̃ : C → R with
logarithmic energy growth. Furthermore,

(i) the holomorphic 1-form 𝜕𝑢̃ = exp∗(𝜁𝑑 log 𝑧) for some 𝜁 ∈
√
−1R.

(ii) such 𝑢̃ is unique up to a translation by a constant.

Proof. Let 𝛾 be the equivalent class in 𝜋1(C∗) represented the loop 𝜃 ↦→ 𝑒
√
−1𝜃 in C∗. Then

𝜚(𝛾) (𝑥) = 𝑥 + 𝑎 for some 𝑎 ∈ R. Define a map

𝑢̃ : C → R

𝑤 ↦→ 1
2

∫ 𝑤

0
(exp∗(−

√
−1

𝑎

2𝜋
𝑑 log 𝑧 +

√
−1

𝑎

2𝜋
𝑑 log 𝑧)).

Then 𝑢̃(𝑤) = 𝑎
2𝜋 Im(𝑤). Thus, 𝑢̃(𝑤 + 2𝜋

√
−1) = 𝑢̃(𝑤) + 𝑎, that is a 𝜚-equivariant. We have

moreover 𝜕𝑢̃(𝑤) = −
√
−1 𝑎

4𝜋 𝑑𝑤, which is a holomorphic 1-form on C∗. It follows that 𝜕𝜕𝑢̃ ≡ 0.
Thus, 𝑢̃ is pluriharmonic, and

𝜕𝑢̃ = exp∗(−
√
−1

𝑎

4𝜋
𝑑 log 𝑧).

This proves Item (i).
Endow D∗ with the standard Euclidean metric

√
−1 𝑑𝑧∧𝑑𝑧̄

2 . However, note that the energy is
independent of the choice of metric on the Riemann surface. We can easily compute the energy of
𝑢 in the annulus D𝑟 ,1 := {𝑟 < |𝑧 | < 1} ⊂ C∗:

𝐸𝑢 [D𝑟 ,1] =
∫
D𝑟,1

|𝑑𝑢 |2
√
−1𝑑𝑧 ∧ 𝑑𝑧

2

=

∫
D𝑟,1

| 𝑎
2𝜋
𝑑𝜃 |2𝑟𝑑𝑟 ∧ 𝑑𝜃

= ( 𝑎
2𝜋

)2
∫ 2𝜋

0
𝑑𝜃

∫ 1

𝑟

𝑑 log 𝑟 =
𝑎2

2𝜋
log

1
𝑟
.

By Definition 1.5, the translation length 𝐿𝛾 = |𝑎 |. By Definition 1.6, 𝑢̃ has logarithmic energy
growth. In conclusion, 𝑢̃ is a pluriharmonic map with logarithmic energy growth.

Let us prove Item (ii). If 𝑣̃ : C → R is another 𝜚-equivariant pluriharmonic map with
logarithmic energy growth, then 𝜕𝑣̃ is a holomorphic 1-form, which descends to 1-form 𝜂 on C∗

such that exp∗ 𝜂 = 𝜕𝑣̃. By [BDDM22], 𝜂 is a logarithmic form on C∗. Hence there exists a constant
𝑏 = 𝑏1 +

√
−1𝑏2 with 𝑏𝑖 ∈ R such that 𝜂 = 𝑏𝑑 log 𝑧. Note that 𝑑𝑣̃ = exp∗(𝜂 + 𝜂). It follows that

𝑎 = 𝑣̃(𝑤 + 2𝜋
√
−1) − 𝑣̃(𝑤) =

∫
𝛾

(𝜂 + 𝜂) = −4𝜋𝑏2.(2.1)

Hence 𝑏2 = − 𝑎
4𝜋 .
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Let us compute the energy of 𝑣̃ on the annulus D𝑟 ,1. We have

𝐸𝑣 [D𝑟 ,1] =
∫
D𝑟,1

|𝑑𝑣 |2
√
−1𝑑𝑧 ∧ 𝑑𝑧

2
(2.2)

=

∫
D𝑟,1

|2𝑏1𝑑 log 𝑟 − 2𝑏2𝑑𝜃 |2𝑟𝑑𝑟 ∧ 𝑑𝜃

=
(
( 𝑎
2𝜋

)2 + 4𝑏2
1
) ∫ 2𝜋

0
𝑑𝜃

∫ 1

𝑟

𝑑 log 𝑟

=
𝑎2

2𝜋
log

1
𝑟
+ 8𝜋𝑏2

1𝑑 log
1
𝑟
.

By eq. (1.4), 𝑏1 = 0. This implies that 𝜕𝑢̃ = 𝜕𝑣̃. Hence 𝑑 (𝑢̃ − 𝑣̃) = 0. Therefore, 𝑢̃ is unique up to
a translation. The lemma is proved. □

Let (𝑋, Σ) be a log smooth pair. Let us recall the definition of residue of a logarithmic
form 𝜂 ∈ 𝐻0(𝑋,Ω

𝑋
(logΣ)) around an irreducible component Σ𝑖 of Σ. We fix an admissible

coordinate (𝑈; 𝑧1 . . . , 𝑧𝑛) centered at some point 𝑥0 ∈ Σ𝑖 away from the crossings of Σ such that
(𝑧1 = 0) = 𝑈 ∩ Σ𝑖 = 𝑈 ∩ Σ. Then we can write 𝜂 = ℎ1(𝑧)𝑑 log 𝑧1 +

∑𝑛
𝑖=2 ℎ𝑖 (𝑧)𝑑𝑧𝑖 . We define

ResΣ𝑖
𝜂 := ℎ1(0).(2.3)

Note that such definition does not depend on the choice of local coordinate system.

Definition 2.2 (Pure imaginary logarithmic form). Let (𝑋, Σ) be a log smooth pair. A logarithmic
form 𝜂 is pure imaginary if for each irreducible component Σ𝑖 of Σ, the residue of 𝜂 at Σ𝑖 is a pure
imaginary number.

Note that Definition 2.2 does not depend on the choice of compactification of 𝑋 = 𝑋\Σ.

Proposition 2.3. Let (𝑋, Σ) be a log smooth pair. Let 𝜚 : 𝜋1(𝑋) → (R, +) be a representation. If
there exists a 𝜚-equivariant pluriharmonic map 𝑢̃ : 𝑋 → R, then 𝑢̃ has logarithmic energy growth
if and only if 𝜕𝑢̃ descends to a logarithmic form 𝜂 ∈ 𝐻0(𝑋,Ω

𝑋
(logΣ)), that is pure imaginary.

Proof. We write Σ =
∑𝑚

𝑖=1 Σ𝑖 into a sum of irreducible components. Fix some 𝑖 ∈ {1, . . . , 𝑚}.
Choose a point 𝑥0 ∈ Σ𝑖\ ∪ 𝑗≠𝑖 Σ 𝑗 . We take a small embedded disk 𝑓 : D → 𝑋 such that
𝑓 −1(Σ) = 𝑓 −1(Σ𝑖) = {0} and 𝑓 is transverse to Σ𝑖 at 𝑥0. Let 𝛾 ∈ 𝜋1(𝑋) be the element
representing the loop 𝜃 ↦→ 𝑓 ( 1

2𝑒
𝑖 𝜃 ). Let H be the left half plane of C. Then exp : H → D∗ is

the universal covering map. Let 𝑓 : H → 𝑋 be the lift of 𝑓 between universal covers. Then
𝑢̃ ◦ 𝑓 : H → R is 𝑓 ∗𝜚-equivariant pluriharmonic map and let 𝑢 𝑓 be the section defined in § 1.2.

If 𝑢̃ has logarithmic energy growth, then by [BDDM22], 𝜕𝑢̃ descends to a logarithmic form
𝜂 ∈ 𝐻0(𝑋,Ω

𝑋
(logΣ)). Let us prove that 𝜂 is pure imaginary. By Definition 1.5, the translation

length 𝐿𝛾 is given by

𝐿𝛾 =

����∫
𝛾

( 𝑓 ∗𝜂 + 𝑓 ∗𝜂)
���� = ���2𝜋√−1(ResΣ𝑖

𝜂 − ResΣ𝑖
𝜂)
��� .

Since 𝜂 has logarithmic poles, there is some ℎ(𝑧) ∈ O (D) such that 𝑓 ∗𝜂 = ℎ(𝑧)𝑑 log 𝑧. Write
ℎ(𝑧) = ℎ1(𝑧) +

√
−1ℎ2(𝑧), where ℎ𝑖 (𝑧) are real harmonic functions on D. Then

𝐿𝛾 = |4𝜋ℎ2(0) |.(2.4)
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The energy

𝐸𝑢 𝑓 [D𝑟 ,1] =
∫
D𝑟,1

| 𝑓 ∗𝜂 + 𝑓 ∗𝜂 |2
√
−1𝑑𝑧 ∧ 𝑑𝑧

2
(2.5)

=

∫
D𝑟,1

|ℎ(𝑧)𝑑 log 𝑧 + ℎ(𝑧)𝑑 log 𝑧 |2
√
−1𝑑𝑧 ∧ 𝑑𝑧

2

=

∫
D𝑟,1

|2ℎ1(𝑧)𝑑 log 𝑡 − 2ℎ2(𝑧)𝑑𝜃 |2𝑡𝑑𝑡 ∧ 𝑑𝜃

=

∫ 1

𝑟

∫ 2𝜋

0
|2ℎ1(𝑡𝑒

√
−1𝜃 ) |2𝑑 log 𝑡 ∧ 𝑑𝜃

+
∫ 1

𝑟

∫ 2𝜋

0
|2ℎ2(𝑡𝑒

√
−1𝜃 ) |2𝑑 log 𝑡 ∧ 𝑑𝜃

Since |ℎ𝑖 (𝑧) |2 are subharmonic functions on D, by the mean value inequality there exists a constant
𝐶 > 0 such that

8𝜋( |ℎ1(0) |2 + |ℎ2(0) |2) log
1
𝑟
≤ 𝐸𝑢 𝑓 [D𝑟 ,1] ≤ 8𝜋( |ℎ1(0) |2 + |ℎ2(0) |2) log

1
𝑟
+ 𝐶, ∀ 𝑟 ∈ (0, 1).

(2.6)

By Definition 1.6, we have ℎ1(0) = 0. Hence 𝜂 is pure imaginary.
We now assume that 𝜂 is pure imaginary. Let 𝑔 : D → 𝑋 be any holomorphic map such

that 𝑔−1(Σ) = {0}. Then 𝑔∗𝜂 = ℎ(𝑧) log 𝑧 with ℎ(0) ∈
√
−1R. We denote by 𝑢𝑔 the section of

D∗ ×𝑔∗ 𝜚 R → D∗ defined in § 1.2. By the same manner as (2.4) and (2.6), we can show that 𝑢𝑔 has
logarithmic energy growth. By Definition 1.6, 𝑢 has logarithmic energy growth. □

We can extend Lemma 2.1 to the case of semi-abelian varieties.

Proposition 2.4. Let 𝐴 be a semiabelian variety and let 𝜚 : 𝜋1(𝐴) → (R𝑁 , +) be a representation.
Then there is a 𝜚-equivariant pluriharmonic map 𝑢 : 𝐴 → R𝑁 with logarithmic energy growth.
Such pluriharmonic map is unique up to translation.

Proof. Note that there is a short exact sequence

0 → (C∗)𝑘
𝑗
→ 𝐴

𝜋→ 𝐴0 → 0,

where 𝐴0 is an abelian variety. Let 𝐴 be the canonical compactification of 𝐴 such that 𝜋 : 𝐴→ 𝐴0
extends to a (P1)𝑘-fiber bundle

0 → (P1)𝑘
𝑗
→ 𝐴

𝜋̄→ 𝐴0 → 0.

Let Σ := 𝐴 \ 𝐴 which is a smooth divisor. Let 𝑉 ⊂ 𝐻0(𝐴,Ω
𝐴
(logΣ)) be the R-linear subspace

consisting of logarithmic forms, whose resides at each irreducible component of Σ are pure
imaginary. Let 𝑑 := dim 𝐴0.

Claim 2.5. We have dimR𝑉 = 2𝑑 + 𝑘 . The R-linear map

Ψ : 𝑉 → 𝐻1(𝐴,R)(2.7)

𝜂 ↦→ {𝜂 + 𝜂
2

}

is an isomorphism of R-vector spaces.

Proof. Note that dimC 𝐻
0(𝐴,Ω

𝐴
(logΣ)) = 𝑑+𝑘 and dimR 𝐻

1(𝐴,R) = 2𝑑+𝑘 . We choose aC-basis
𝜂1, . . . , 𝜂𝑑; 𝜉1, . . . , 𝜉𝑘 for𝐻0(𝐴,Ω

𝐴
(logΣ)) = 𝑑+𝑘 such that {𝜂1, . . . , 𝜂𝑑} ⊂ 𝜋∗𝐻0(𝐴0,Ω𝐴0). The

residues of 𝜂𝑖 at each component of Σ is thus zero. Let (𝑤1, . . . , 𝑤𝑘) be the canonical coordinate
of (C∗)𝑘 . Then 𝑗∗𝜉𝑚 =

∑𝑘
𝑖=1 𝑎𝑚𝑖𝑑 log𝑤𝑖 with (𝑎𝑚1, . . . , 𝑎𝑚𝑘) ∈ C𝑘 . Note that 𝑗∗𝜉1, . . . , 𝑗

∗𝜉𝑚 is a
C-basis of 𝐻0((P1)𝑘 ,Ω(P1 )𝑘 (log𝐷)), where 𝐷 := (P1)𝑘 \ (C∗)𝑘 . Note that 𝑑 log𝑤1, . . . , 𝑑 log𝑤𝑘

is also C-basis of 𝐻0((P1)𝑘 ,Ω(P1 )𝑘 (log𝐷)). We can thus replace 𝜉1, . . . , 𝜉𝑚 by some C-linear
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combination such that 𝑗∗𝜉𝑖 =
√
−1𝑑 log𝑤𝑖 for each 𝑖 = 1, . . . , 𝑘 . This implies that each 𝜉𝑖 has pure

imaginary residues at each irreducible component of Σ. Then we have

𝑉 := SpanR{𝜉1, . . . , 𝜉𝑘 , 𝜂1, . . . , 𝜂𝑑 , 𝑖𝜂1, . . . , 𝑖𝜂𝑑}.
We can see that Ψ is a R-isomorphism. □

Let the homomorphism pr𝑖 : (R𝑁 , +) → (R, +) be the projection into 𝑖-th factor. Then
pr𝑖 ◦ 𝜚 : 𝜋1(𝐴) → (R, +) is a representation which can be identified with an element 𝜆𝑖 ∈ 𝐻1(𝐴,R)
as 𝐻1(𝐴,R) ≃ Hom(𝐻1(𝐴,Z),R). Denote by 𝜁𝑖 := Ψ−1(𝜆𝑖). We define

𝑢̃𝑖 : 𝐴→ R

𝑧 ↦→ 1
2

∫ 𝑧

0
𝜋∗𝐴(𝜁𝑖 + 𝜁𝑖).

Then we obtain a smooth map 𝑢̃ : 𝐴̃→ R𝑁 defined by 𝑢̃ = (𝑢̃1, . . . , 𝑢̃𝑁 ). This map is pluriharmonic
as 𝜕𝜕𝑢̃ = ( 1

2𝜕𝜋
∗
𝐴
𝜁1, . . . ,

1
2𝜕𝜋

∗
𝐴
𝜁𝑁 ) = (0, . . . , 0). One can verify that 𝑢̃ is 𝜚-equivariant. Indeed,

for any 𝑥 ∈ 𝐴 and any 𝛾 ∈ 𝜋1(𝐴), we have

𝑢̃𝑖 (𝛾.𝑥) − 𝑢̃𝑖 (𝑥) =
∫
𝛾

1
2
(𝜁𝑖 + 𝜁𝑖) = 𝜆𝑖 (𝛾) = pr𝑖 ◦ 𝜚(𝛾) (𝑢̃𝑖 (𝑥)) − 𝑢̃𝑖 (𝑥).(2.8)

Let us prove that 𝑢̃ has logarithmic energy growth. Since 𝜕𝑢𝑖 = 1
2𝜋

∗
𝑋
𝜁𝑖 , where 𝜁𝑖 is a pure imaginary

logarithmic 1-form, by Proposition 2.3, 𝑢̃𝑖 : 𝐴→ R is a pr𝑖◦𝜚-pluriharmonic map with logarithmic
energy growth. Let 𝑓 : D → 𝐴 be any holomorphic map such that 𝑓 −1(Σ) = {0}. Let 𝛾 be the
element in 𝜋1(𝑋) represented by the loop 𝜃 ↦→ 𝑓 ( 1

2𝑒
√
−1𝜃 ). Let 𝐿𝑖 be the translation length of

pr𝑖 ◦ 𝜚(𝛾). It follows that there exists a constant 𝐶 > 0 such that for each 𝑖 ∈ {1, . . . , 𝑁}, we have

𝐿2
𝑖

2𝜋
log

1
𝑟
≤ 𝐸 (𝑢𝑖 ) 𝑓 [D𝑟 ,1] ≤

𝐿2
𝑖

2𝜋
log

1
𝑟
+ 𝐶, ∀ 𝑟 ∈ (0, 1).

Note that

𝐸𝑢 𝑓 [D𝑟 ,1] =
𝑁∑︁
𝑖=1

𝐸 (𝑢𝑖 ) 𝑓 [D𝑟 ,1], and 𝐿2
𝜚 (𝛾) =

𝑁∑︁
𝑖=1

𝐿2
𝑖 .

We thus have
𝐿2
𝜚 (𝛾)

2𝜋
log

1
𝑟
≤ 𝐸𝑢 𝑓 [D𝑟 ,1] ≤

𝐿2
𝜚 (𝛾)

2𝜋
log

1
𝑟
+ 𝐶, ∀ 𝑟 ∈ (0, 1).

Thus, 𝑢̃ is a pluriharmonic map with logarithmic energy growth.
Let us prove the uniqueness assertion. Let 𝑣̃ = (𝑣̃1, . . . , 𝑣̃𝑁 ) : 𝐴→ R𝑁 be another 𝜚-equivariant

pluriharmonic map with logarithmic energy growth. Then for each 𝑖 ∈ {1, . . . , 𝑁}, 𝑣̃𝑖 : 𝐴 → R is
a pr𝑖 ◦ 𝜚-pluriharmonic map with logarithmic energy growth. By Proposition 2.3, 𝜕𝑣̃𝑖 descends to
a logarithmic form 1

2𝜔𝑖 that is pure imaginary. By (2.8), for any 𝛾 ∈ 𝜋1(𝑋), we have

𝑣̃𝑖 (𝛾.𝑥) − 𝑣̃𝑖 (𝑥) =
∫
𝛾

1
2
(𝜔𝑖 + 𝜔̄𝑖) = pr𝑖 ◦ 𝜚(𝛾) (𝑣̃𝑖 (𝑥)) − 𝑣̃𝑖 (𝑥)

= pr𝑖 ◦ 𝜚(𝛾) (𝑢̃𝑖 (𝑥)) − 𝑢̃𝑖 (𝑥)𝜆𝑖 (𝛾) =
∫
𝛾

1
2
(𝜁𝑖 + 𝜁𝑖).

By Claim 2.5, we have 𝜁𝑖 = 𝜔𝑖 . It follows that 𝑑𝑢̃ = 𝑑𝑣̃. Hence 𝑢̃− 𝑣̃ is a constant. The proposition
is proved. □

Let us prove Theorem A, except for Theorem A.(iv), whose proof is deferred to § 5.

Proof of Theorem A. Consider the enlarged Bruhat-Tits building Δ(𝐺). It is indeed the product of
the Bruhat-Tits building of Δ(D𝐺) where D𝐺 is the derived group of 𝐺, with a real Euclidean
space 𝑉 := R𝑁 such that 𝐺 (𝐾) acts on 𝑉 by translation (cf. [KP23]). The fixator of any point in
Δ(𝐺) is an open and bounded subgroup of 𝐺 (𝐾). Note that there is a natural action of D𝐺 (𝐾) on
Δ(D𝐺). The action of 𝐺 (𝐾) on Δ(D𝐺) is given by the composition of 𝐺 (𝐾) → D𝐺 (𝐾) with
the action of of D𝐺 (𝐾) on Δ(D𝐺).
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We consider the representation 𝜎 : 𝜋1(𝑋) → D𝐺 (𝐾) induced by 𝜚, which is Zariski dense.
By [BDDM22], there exists a𝜎-equivariant pluriharmonic map 𝑢̃0 : 𝑋 → Δ(D𝐺) with logarithmic
energy growth.

On the other hand, for the action of 𝐺 (𝐾) on 𝑉 , it induces a representation 𝜏 : 𝜋1(𝑋) → (𝑉, +).
Let 𝑎 : 𝑋 → 𝐴 be the quasi-Albanese map, and 𝑎̃ : 𝑋 → 𝐴 be a lift of 𝑎 between universal
covers. Note that 𝜏 factors through a representation 𝜏′ : 𝜋1(𝐴) → (𝑉, +). By Proposition 2.4,
there exists a 𝜏′-equivariant pluriharmonic map 𝑣̃ : 𝐴 → 𝑉 which has logarithmic energy growth.
Therefore, 𝑣̃ ◦ 𝑎̃ : 𝑋 → 𝑉 is a 𝜏-equivariant pluriharmonic map. Since 𝜕𝑣̃ descends to a tuple of
logarithmic 1-forms {𝜔1, . . . , 𝜔𝑚} on 𝐴 that are pure imaginary, it implies that 𝜕𝑣̃ ◦ 𝑎̃ descends to
{𝑎∗𝜔1, . . . , 𝑎

∗𝜔𝑚}, that are also pure imaginary logarithmic 1-forms on (𝑋, Σ). By Proposition 2.3,
𝑣̃ ◦ 𝑎̃ has logarithmic energy growth. We define

𝑢̃ : 𝑋 → Δ(D𝐺) ×𝑉(2.9)
𝑥 ↦→ (𝑢̃0(𝑥), 𝑣̃ ◦ 𝑎̃(𝑥)).

Since 𝜚 = (𝜎, 𝜏), 𝑢̃ is 𝜚-equivariant pluriharmonic map. Since both 𝑢̃0 and 𝑣̃ ◦ 𝑎̃ have logarithmic
energy growth, 𝑢̃ also has logarithmic energy growth. The existence assertion in Theorem A.(i) is
established.

Let us prove Theorem A.(ii). By [BDDM22, Theorem A], 𝑢̃0 is harmonic with respect to an
arbitrary Kähler metric 𝜔 on 𝑋 . The pluriharmonicity of 𝑣̃ ◦ 𝑎̃ yields that 𝜕𝜕𝑣̃ ◦ 𝑎̃ ≡ 0. Thus,

Δ𝑣̃ ◦ 𝑎̃ = −2
√
−1Λ𝜔𝜕𝜕𝑣̃ ◦ 𝑎̃ ≡ 0,

where Λ𝜔 denotes the contraction with 𝜔. It follows that 𝑣̃ ◦ 𝑎̃ is harmonic with respect to the
metric 𝜔. Therefore, 𝑢̃ is harmonic with respect to the metric 𝜔.

Finally, we prove Theorem A.(iii). Let𝑌 be a smooth projective compactification withΣ𝑌 := 𝑌\𝑌
a simple normal crossing divisor such that 𝑓 extends to morphism 𝑓 : 𝑌 → 𝑋 . Then by [BDDM22,
Theorem A], 𝑢̃0 ◦ 𝑓 : 𝑌 → Δ(𝐺) is a pluriharmonic map with logarithmic energy growth. By the
above arguments, 𝜕𝜈̃◦𝑎̃◦ 𝑓 : 𝑌 → 𝑉 descends to logarithmic forms {(𝑎◦ 𝑓 )∗𝜔1, . . . , (𝑎◦ 𝑓 )∗𝜔𝑚} on
the log smooth pair (𝑌, Σ𝑌 ), that are pure imaginary. By Proposition 2.3, 𝜈̃ ◦ 𝑎̃ ◦ 𝑓 is pluriharmonic
with logarithmic energy growth. Thus, 𝑢̃ ◦ 𝑓 is pluriharmonic with logarithmic energy growth.
The theorem is proved. □

3. Multivalued section and spectral cover

The notion of multivalued sections of a holomorphic vector bundle over a complex manifold
has appeared in [CDY22, DW24b], and has proven to be important in studying the geometry of
complex algebraic varieties that admit a local system over a non-archimedean local field. In this
section, we provide a more systematic description of multivalued sections and their properties in a
general setting. The construction of multivalued logarithmic 1-forms on log smooth pairs here is
equivalent to, though simpler than, that in [CDY22].

3.1. Construction of spectral cover. We start with the following definition.

Definition 3.1 (Multivalued section). Let 𝑋 be a complex manifold, and let 𝐸 be a holomorphic
vector bundle on 𝑋 . A multivalued (holomorphic) section of 𝐸 on 𝑋 , denoted by 𝜂, is a formal
sum 𝑍𝜂 =

∑𝑚
𝑖=1 𝑛𝑖𝑍𝑖 where 𝑛𝑖 ∈ N∗, and each 𝑍𝑖 is an irreducible closed subvariety of 𝐸 , such that

the natural map 𝑍𝑖 → 𝑋 is a finite and surjective.
A multivalued section 𝜂 is splitting, if for each point 𝑥 ∈ 𝑋 , it has an open neighborhood

Ω𝑥 and holomorphic sections {𝜔1, . . . , 𝜔𝑚} ⊂ Γ(Ω𝑥 , 𝐸 |Ω𝑥
), such that 𝑍𝜂 |Ω𝑥

is the graph of
{𝜔1, . . . , 𝜔𝑚}.

Note that in [CDY22], multivalued sections are splitting ones.
Let 𝑋 be a complex manifold, and let 𝐸 be a holomorphic vector bundle on 𝑋 . Assume that

𝜂 is a splitting multivalued section of 𝐸 . Let 𝑇 be a formal variable. Consider
∏𝑚

𝑖=1(𝑇 − 𝜔𝑖) =:
𝑇𝑚 + 𝜎1𝑇

𝑚−1 + · · · + 𝜎𝑚, where {𝜔1, . . . , 𝜔𝑚} are local sections of 𝐸 whose graph is 𝑍𝜂 . Then
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𝜎𝑖 is a local section of Sym𝑖𝐸 . One can see that 𝜎𝑖 is a global section in 𝐻0(𝑋, Sym𝑖𝐸). We call
𝑇𝑚 + 𝜎1𝑇

𝑚−1 + · · · + 𝜎𝑚 the characteristic polynomial of 𝜂, and denote it by 𝑃𝜂 (𝑇).

Proposition 3.2. Let 𝑋 be a smooth projective variety endowed with a holomorphic vector bundle
𝐸 . Let 𝑋 ′ ⊂ 𝑋 be a topological dense open set. Let 𝜂 be a splitting multivalued section of 𝐸 |𝑋′

over 𝑋 ′. Assume that for the characteristic polynomial 𝑃𝜂 (𝑇) = 𝑇𝑚 + 𝜎1𝑇
𝑚−1 + · · · + 𝜎𝑚 of 𝜂,

its coefficient 𝜎𝑖 ∈ 𝐻0(𝑋 ′, Sym𝑖𝐸 |𝑋′) extends to a section in 𝐻0(𝑋, Sym𝑖𝐸) for each 𝑖. Then 𝜂
extends to a multivalued section of 𝐸 .

Furthermore, there exists a ramified Galois cover 𝜋 : 𝑋sp → 𝑋 with Galois group 𝐺 from
a projective normal variety such that 𝜋∗𝜂 becomes single-valued, i.e., there exists sections
{𝜂1, . . . , 𝜂𝑚} ⊂ 𝐻0(𝑋sp, 𝜋∗𝐸) such that 𝜋∗𝜂 = {𝜂1, . . . , 𝜂𝑚}. The group 𝐺 acts on {𝜂1, . . . , 𝜂𝑚}
as a permutation.

Definition 3.3. The above Galois cover 𝜋 is called the spectral cover of 𝑋 with respect to 𝜂.

Proof. Denote by 𝜇 : 𝐸 → 𝑋 be projection map. Let 𝜆 ∈ 𝐻0(𝐸, 𝜇∗𝐸) be the Liouville section
defined by 𝜆(𝑒) = 𝑒 for any 𝑒 ∈ 𝐸 . Consider the section

𝑃𝜂 (𝜆) := 𝜆𝑚 + 𝜇∗𝜎1𝜆
𝑚−1 + · · · + 𝜇∗𝜎𝑚 ∈ 𝐻0(𝐸, 𝜇∗Sym𝑚𝐸).

Let 𝑍 ⊂ 𝐸 be the zero locus of 𝑃𝜂 (𝜆) (here we count multiplicities). By assumption, one can see
that, 𝑍 |𝑋′ = 𝑍𝜂 . Moreover, 𝜇 |𝑍 : 𝑍 → 𝑋 is a finite morphism. To show that 𝑍 is a multivalued
section of 𝐸 , we need to prove that, for each irreducible component 𝑍𝑖 of 𝑍 , 𝜇 |𝑍𝑖

: 𝑍𝑖 → 𝑋 is
surjective.

Let 𝑍norm be the normalization of 𝑍 which might not be connected. Then the natural morphism
𝑞 : 𝑍norm → 𝑋 is finite. Consider the locus 𝑋◦ of 𝑋 such that 𝑞 is étale. Then 𝑋◦ is a Zariski
dense open set of 𝑋 . One can see that 𝑋◦ ⊃ 𝑋 ′. Set 𝑍norm

◦ := 𝑞−1(𝑋◦) and 𝑍◦ := (𝜇 |𝑍 )−1(𝑋◦).
Note that 𝑍norm

◦ is the normalization of 𝑍◦.

Claim 3.4. 𝜂 extends to a splitting multivalued section of 𝐸 on 𝑋◦.

Proof. Note that 𝑞 : 𝑍norm
◦ → 𝑋◦ is étale of degree𝑚. Hence for every 𝑥 ∈ 𝑋◦, it has neighborhood

Ω𝑥 such that 𝑞−1(Ω𝑥) is isomorphic to 𝑚 copy of Ω𝑥 . Thus it gives rise to 𝑚 natural local sections
𝑠1, . . . , 𝑠𝑚 : Ω𝑥 → 𝑍norm

◦ of 𝑞 : 𝑍norm → 𝑋 such that 𝑠1(Ω𝑥), . . . , 𝑠𝑚(Ω𝑥) correspond to 𝑚
components of 𝑞−1(Ω𝑥). Let 𝜈𝑍 : 𝑍norm → 𝑍 be the normalization map. Then {𝜈𝑍 ◦ 𝑠𝑖 : Ω𝑥 →
𝑍 ⊂ 𝐸}𝑖=1,...,𝑚 ⊂ 𝐻0(Ω𝑥 , 𝐸 |Ω𝑥

). Note that the graph of {𝜈𝑍 ◦ 𝑠1, . . . , 𝜈𝑍 ◦ 𝑠𝑚} is 𝑍 |Ω𝑥
. The claim

is proved. □

We still denote by 𝜂 the extended multivalued section of 𝐸 |𝑋◦ .

Claim 3.5. The étale morphism 𝑞 |𝑍norm
◦ : 𝑍norm

◦ → 𝑋◦ gives rise to a representation 𝜙 : 𝜋1(𝑋◦) →
𝔖𝑚 where 𝔖𝑚 is the symmetric group of 𝑚 elements. Let 𝜋 : 𝑌◦ → 𝑋◦ be the Galois étale cover
corresponding to the finite index subgroup ker 𝜙 of 𝜋1(𝑋◦). Then
• the normalization of the base change 𝑍◦×𝑋◦ 𝑌◦ is a quasi-projective variety with𝑚 connected

component such that each component is isomorphic to 𝑌◦ under the natural map (𝑍◦ ×𝑋◦

𝑌◦)norm → 𝑌◦.
• There are sections {𝜂1, . . . , 𝜂𝑚} ⊂ 𝐻0(𝑌◦, 𝜋∗𝐸) such that {𝜂1, . . . , 𝜂𝑚} = 𝜋∗𝜂.
• 𝐺 acts on {𝜂1, . . . , 𝜂𝑚} as a permutation.

Proof. We fix a base point 𝑥0 ∈ 𝑋 ′. There exists an open neighborhood Ω𝑥0 of 𝑥0 such that, the
multivalued section 𝜂 |Ω𝑥0

is given by sections {𝑠1, . . . , 𝑠𝑚} ⊂ 𝐻0(Ω𝑥0 , 𝐸 |Ω𝑥0
). Consider any loop

𝛾 of 𝑋◦ based at 𝑥0. Since 𝑞 |𝑍norm
◦ : 𝑍norm

◦ → 𝑋◦ is étale, by Definition 3.1, the transport of
{𝑠1, . . . , 𝑠𝑚} along 𝑍norm

◦ |𝛾 gives a permutation of {𝑠1, . . . , 𝑠𝑚} hence an element in the symmetric
group 𝔖𝑚 of 𝑚 elements. We can see that it only depends on the choice of homotopy class of 𝛾
and thus it corresponds to a representation 𝜙 : 𝜋1(𝑋◦) → 𝔖𝑚. Let 𝜋 : 𝑌◦ → 𝑋◦ be the Galois
étale cover with the Galois group 𝐺 := 𝜋1(𝑋◦)/ker 𝜙. Then for any loop 𝛾 ∈ 𝜋1(𝑌◦), the transport
of {𝑠1, . . . , 𝑠𝑚} along 𝑍norm

◦ ×𝑋◦ 𝑌◦ |𝛾 is a trivial permutation, which thus gives rise to holomorphic
sections {𝜂1, . . . , 𝜂𝑚} ⊂ 𝐻0(𝑌◦, 𝜋∗𝐸). It follows that 𝜋∗𝜂 = {𝜂1, . . . , 𝜂𝑚}. One can see that 𝐺
acts on {𝜂1, . . . , 𝜂𝑚} as a permutation.
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Let 𝑊◦ ⊂ 𝜋∗𝐸 be the graph variety of {𝜂1, . . . , 𝜂𝑚}. One can see that 𝑊◦ coincides with
𝑍◦ ×𝑋◦ 𝑌◦. Hence the normalization (𝑍◦ ×𝑋◦ 𝑌◦)norm is isomorphic to 𝑚 copy of 𝑌◦. The claim is
proved. □

Note that 𝜋 : 𝑌◦ → 𝑋◦ extends to a ramified Galois cover 𝑌 → 𝑋 with the Galois group 𝐺,
where 𝑌 is a projective normal variety. We still denote by 𝜋 : 𝑌 → 𝑋 the extended cover.

Let 𝜈 : 𝜋∗𝐸 → 𝑌 the natural projection map. We have the following commutative diagram:

𝜋∗𝐸 𝐸

𝑌 𝑋

𝑓

𝜈 𝜇

𝜋

Let 𝜆′ ∈ 𝐻0(𝜋∗𝐸, 𝜈∗𝜋∗𝐸) be the Liouville section. Consider the section

𝑄(𝜆′) := 𝜆′𝑚 + 𝜈∗𝜋∗𝜎1𝜆
′𝑚−1 + · · · + 𝜈∗𝜋∗𝜎𝑚 ∈ 𝐻0(𝜋∗𝐸, 𝜈∗𝜋∗Sym𝑚𝐸).

Let𝑊 ⊂ 𝜋∗𝐸 be the zero scheme of 𝑄′(𝜆′). Note that𝑊 |𝜈−1 (𝑌◦ ) = 𝑊
◦, that is the graph variety of

{𝜂1, . . . , 𝜂𝑚}. Therefore, over 𝜈−1(𝑌◦), we have

𝑄(𝜆′) =
𝑚∏
𝑖=1

(𝜆′ − 𝜂𝑖).

By continuity, it follows that the above equality holds over the whole 𝜋∗𝐸 . Since we have
𝑄(𝜆′) = 𝑓 ∗𝑃𝜂 (𝜆), 𝑊 is equal to the scheme theoretic inverse image 𝑓 −1(𝑍). Note that each
irreducible component of𝑊 is mapped to𝑌 surjectively. It follows that each irreducible component
of 𝑍 is mapped to 𝑋 surjectively. Hence 𝑍 is a multivalued section of 𝐸 → 𝑋 . We write
𝜋 : 𝑋sp → 𝑋 for 𝜋 : 𝑌 → 𝑋 . The proposition is proved. □

3.2. Invariant 1-forms on Bruhat-Tits buildings. Let 𝐺 be a reductive algebraic group over a
non-archimedean local field. Then 𝐺 induces a real Euclidean space 𝑉 endowed with a Euclidean
metric and an affine Weyl group𝑊 acting on𝑉 isometrically. Such group𝑊 is a semidirect product
𝑇 ⋊𝑊𝑣 , where𝑊𝑣 is the vectorial Weyl group, which is a finite group generated by reflections on
𝑉 , and 𝑇 is a translation group of 𝑉 .

For any apartment 𝐴 in Δ(𝐺), there exists an isomorphism 𝑖𝐴 : 𝐴→ 𝑉 , which is called a chart.
For two charts 𝑖𝐴1 : 𝐴1 → 𝑉 and 𝑖𝐴2 : 𝐴2 → 𝑉 , if 𝐴1∩𝐴2 ≠ ∅, it satisfies the following properties:

(a) 𝑌 := 𝑖𝐴2 (𝑖−1
𝐴1
(𝑉)) is convex.

(b) There is an element 𝑤 ∈ 𝑊 such that 𝑤 ◦ 𝑖𝐴1 |𝐴1∩𝐴2 = 𝑖𝐴2 |𝐴1∩𝐴2 .
Let us fix orthonormal coordinates (𝑥1, . . . , 𝑥𝑁 ) for𝑉 . Since𝑊𝑣 ⊂ GL(𝑉) acts on𝑉 isometrically,
for any 𝑤 ∈ 𝑊𝑣 , (𝑤∗𝑥1, . . . , 𝑤

∗𝑥𝑁 ) are orthonormal coordinates for 𝑉 . We define a subset of 𝑉∗

by setting

Φ := {𝑤∗𝑥𝑖}𝑖∈{1,...,𝑁 };𝑤∈𝑊𝑣 .(3.1)

Since 𝑊𝑣 is a finite group, then Φ is a finite set. Note that Φ is invariant under the action by 𝑊𝑣 .
We write Φ = {𝛽1, . . . , 𝛽𝑚}.

We define real affine functions

𝛽𝐴,𝑖 := 𝛽𝑖 ◦ 𝑖𝐴(𝑥)(3.2)

on 𝐴 for each 𝑖.

Lemma 3.6. If 𝐴1 ∩ 𝐴2 ≠ ∅, then we have

{𝑑𝛽𝐴1,1, . . . , 𝑑𝛽𝐴1,𝑚}|𝐴1∩𝐴2 = {𝑑𝛽𝐴2,1, . . . , 𝑑𝛽𝐴2,𝑚}|𝐴1∩𝐴2 .

Proof. By Item (b), there exists an element 𝑤 ∈ 𝑊 such that 𝛽𝑘 ◦ 𝑖𝐴2 |𝐴1∩𝐴2 = 𝛽𝑘 ◦ 𝑤 ◦ 𝑖𝐴1 |𝐴1∩𝐴2
for any 𝑘 = 1, . . . , 𝑚. Recall that𝑊𝑣 permutes Φ. It follows that there exist 𝑎1, . . . , 𝑎𝑚 ∈ R and a
permutation 𝜎 of 𝑚-elements such that

𝛽𝑘 ◦ 𝑖𝐴2 |𝐴1∩𝐴2 = 𝛽𝑘 ◦ 𝑤 ◦ 𝑖𝐴1 |𝐴1∩𝐴2 = 𝛽𝜎 (𝑘 ) ◦ 𝑖𝐴1 |𝐴1∩𝐴2 − 𝑎𝑘(3.3)

for any 𝑘 = 1, . . . , 𝑚. This implies the lemma. □



12 Y. DENG AND C. MESE

3.3. Mutivalued 1-forms and spectral 1-forms. We prove Theorem C, except for Theorem C.(ii),
whose proof is defered to § 4.

Theorem 3.7. Let (𝑋,Σ) be a smooth log pair. Let 𝜚, 𝐺 and 𝑢̃ be as in Theorem A. Then

(i) the pluriharmonic map 𝑢̃ induces a multivalued logarithmic 1-form 𝜂 on the log pair (𝑋,Σ).
(ii) There exists a ramified Galois cover 𝜋 : 𝑋sp → 𝑋 such that 𝜋∗𝜂 becomes single-valued; i.e.,

𝜋∗𝜂 := {𝜔1, . . . , 𝜔𝑚} ⊂ 𝐻0(𝑋sp, 𝜋∗Ω
𝑋
(logΣ)).

(iii) Denote by 𝑋sp = 𝜋−1(𝑋), and let Σ1 := 𝑋sp\𝑋sp. Let 𝜇 : 𝑌 → 𝑋sp be a log resolution of
(𝑋sp, Σ1), with Σ𝑌 := 𝜇−1(Σ1) a simple normal crossing divisor. Then logarithmic forms
{𝜇∗𝜔1, . . . , 𝜇

∗𝜔𝑚} are pure imaginary.

Proof. Step 1. We assume that 𝐺 is semi-simple. Let 𝑢 be the corresponding section of 𝑋 ×𝜚

Δ(𝐺) → 𝑋 of 𝑢̃ defined in § 1.2. Let R(𝑢) ⊂ 𝑋 be the regular locus of 𝑢 defined in Definition 1.2.
Then 𝑋\R(𝑢) is an open subset of 𝑋 of Hausdorff codimension at least two by Lemma 1.3.

For any regular point 𝑥 ∈ R(𝑢) of 𝑢 (cf. Definition 1.2), one can choose a simply-connected
open neighborhood𝑈 of 𝑥 such that

(1) the inverse image 𝜋−1
𝑋
(𝑈) = ∐

𝛼∈𝐼 𝑈𝛼 is a union of disjoint open sets in 𝑋 , each of which is
mapped isomorphically onto𝑈 by 𝜋𝑋 : 𝑋 → 𝑋 .

(2) For some 𝛼 ∈ 𝐼, there is an apartment 𝐴𝛼 of Δ(𝐺) such that 𝑢(𝑈𝛽) ⊂ 𝐴𝛽 .
Let Φ = {𝛽1, . . . , 𝛽𝑚} be the subset of 𝑉∗ defined in (3.1). For each apartment 𝐴 of Δ(𝐺),
{𝛽𝐴,1, . . . , 𝛽𝐴,𝑚} are the affine functions on 𝐴 defined in (3.2). For each 𝑗 ∈ {1, . . . , 𝑚}, we define
a real function

𝑢𝛼, 𝑗 = 𝛽𝐴𝛼 , 𝑗 ◦ 𝑢̃ ◦ (𝜋𝑋 |𝑈𝛼
)−1 : 𝑈 → R.(3.4)

By the pluriharmonicity of 𝑢̃, we have 𝜕𝜕𝑢𝛼, 𝑗 = 0 for each 𝑗 . Hence 𝜕𝑢𝛼, 𝑗 is a holomorphic
1-form on𝑈. By [BDDM22, §4.2], the set of holomorphic 1-forms {𝜕𝑢𝛼,1, . . . , 𝜕𝑢𝛼,𝑚} on𝑈 will
glue together into a splitting multivalued 1-forms 𝜂 over R(𝑢). Moreover, for the characteristic
polynomial 𝑃𝜂 (𝑇) := 𝑇𝑚 + 𝜎1𝑇

𝑚−1 + · · · + 𝜎𝑚 of 𝜂 defined in § 3.1, each 𝜎𝑖 extends to a
logarithmic 1-form in 𝐻0(𝑋,Ω

𝑋
(logΣ)). Hence conditions in Proposition 3.2 are fulfilled. It

implies that, 𝜂 extends to a multivalued logarithmic 1-form over (𝑋,Σ), and there exists a spectral
cover 𝜋 : 𝑋sp → 𝑋 with respect to 𝜂. The first two assertions of the theorem are proved.

We denote by 𝑓 : (𝑌, Σ𝑌 ) → (𝑋, Σ) be the morphism between log smooth pairs, that is the
composition of 𝜇 and 𝜋. Let 𝑓 : 𝑌 → 𝑋 be the restriction of 𝑓 over 𝑌 . Then by Theorem A,
𝑢̃ ◦ 𝑓 : 𝑌 → Δ(𝐺) is an 𝑓 ∗𝜚-equivariant pluriharmonic map with logarithmic energy growth. Here
we denote by 𝑓 : 𝑌 → 𝑋 the lift of 𝑓 between the universal covers. Write 𝑣̃ := 𝑢̃ ◦ 𝑓 and let 𝑣 be
the corresponding section.

We fix an irreducible component Σ𝑜 of Σ𝑌 . Since S(𝑢) := 𝑋\R(𝑢) has Hausdorff codimension
at least two, we can choose an embedded transverse disk 𝑔 : D → 𝑌 , such that 𝑔−1(Σ𝑜) =

𝑔−1(Σ𝑌 ) = {0}, and 𝑔(D) intersects with Σ𝑜 transversely. Furthermore, ( 𝑓 ◦ 𝑔)−1(S(𝑢)) has
Hausdorff dimension 0.

We fix the Euclidean metric
√
−1
2 𝑑𝑧 ∧ 𝑑𝑧 over D∗. By the above construction, the multivalued

1-forms associated with the equivariant pluriharmonic maps we defined are functorial. In other
words,

𝑓 ∗𝜂 = {𝜇∗𝜔1, . . . , 𝜇
∗𝜔𝑚} ⊂ 𝐻0(𝑌,Ω

𝑌
(logΣ𝑌 ))

corresponds to the multivalued 1-form induced by 𝑣̃. Thus, applying (3.8.(i)) below, after rescaling
of 𝜂 by multiplying it by 1√

|𝑊𝑣 |
, we obtain the following over 𝑓 −1(R(𝑢)):

|∇𝑣 |2 =

𝑚∑︁
𝑖=1

|𝜇∗𝜔𝑖 + 𝜇∗𝜔̄𝑖 |2,

where |∇𝑣 |2 is the energy density function of 𝑣. Since |∇𝑣 |2 ∈ 𝐿1
loc, we conclude that the above

equality holds over the whole 𝑌 .



PLURIHARMONIC MAPS TO EUCLIDEAN BUILDINGS 13

Let 𝜈𝑔 be the section of D∗ ×( 𝑓 ◦𝑔)∗ 𝜚 Δ(𝐺) → D∗ defined in § 1.2. On the other hand, since
( 𝑓 ◦ 𝑔)−1(S(𝑢)) has Hausdorff dimension 0, by the same argument as above, we can conclude that

|∇𝑣𝑔 |2 =

𝑚∑︁
𝑖=1

|𝑔∗𝜇∗𝜔𝑖 + 𝑔∗𝜇∗𝜔̄𝑖 |2.

Write 𝑔∗𝜇∗𝜔𝑖 = (𝑎𝑖 (𝑧) +
√
−1𝑏𝑖 (𝑧))𝑑 log 𝑧, where 𝑎𝑖 (𝑧) and 𝑏𝑖 (𝑧) are real harmonic functions on

D. Then by the same computation as in (2.5) and (2.6), there exists a constant 𝐶 > 0 such that

8𝜋(
𝑚∑︁
𝑖=1

|𝑎𝑖 (0) |2 + |𝑏𝑖 (0) |2) log
1
𝑟
≤ 𝐸𝑣𝑔 [D𝑟 ,1] ≤ 8𝜋(

𝑚∑︁
𝑖=1

|𝑎𝑖 (0) |2 + |𝑏𝑖 (0) |2) log
1
𝑟
+ 𝐶, ∀ 𝑟 ∈ (0, 1).

(3.5)

Let 𝛾 ∈ 𝜋1(𝑌 ) be the element representing the loop 𝜃 ↦→ 𝑔( 1
2𝑒

√
−1𝜃 ). Since 𝑣 has logarithmic

energy growth, by Definition 1.6, we have

𝐿2
𝑓 ∗ 𝜚 (𝛾) = 16𝜋2(

𝑚∑︁
𝑖=1

|𝑎𝑖 (0) |2 + |𝑏𝑖 (0) |2).(3.6)

Since ( 𝑓 ◦ 𝑔)−1(S(𝑢)) has Hausdorff dimension 0, by [Shi68, Corollary 1] there exists a subset
𝐼 ⊂ (0, 1) of Lebesgue measure 1, such that for each 𝑟 ∈ 𝐼, the loop ℓ𝑟 in D∗ defined by
𝜃 ↦→ 𝑟𝑒

√
−1𝜃 , does not intersect with ( 𝑓 ◦ 𝑔)−1(S(𝑢)). Let 𝛾 ∈ 𝜋1(𝑌 ) be the element representing

the loop 𝜃 ↦→ 𝑔(𝑟𝑒
√
−1𝜃 ). In this case, the translation length 𝐿 𝑓 ∗ 𝜚 (𝛾) satisfies that, for any 𝑟 ∈ 𝐼,

we have

𝐿 𝑓 ∗ 𝜚 (𝛾) ≤
∮
ℓ𝑟

√√
𝑚∑︁
𝑖=1

| (𝑔∗𝜇∗𝜔𝑖 + 𝑔∗𝜇∗𝜔̄𝑖) (
𝜕

𝜕𝜃
) |2𝑑𝜃

=

∫ 2𝜋

0

√√
𝑚∑︁
𝑖=1

|2𝑏𝑖 (𝑟𝑒
√
−1𝜃 ) |2𝑑𝜃.

If letting 𝑟 ∈ 𝐼 tends to 0, we have

𝐿2
𝑓 ∗ 𝜚 (𝛾) ≤ 16𝜋2

𝑚∑︁
𝑖=1

𝑏2
𝑖 (0).

It follows from (3.6) that 𝑎𝑖 (0) = 0 for each 𝑖. Thus, for each 𝑖 ∈ {1, . . . , 𝑚}, we have ResΣ𝑜
𝜇∗𝜔𝑖 =√

−1𝑏𝑖 (0), which is pure imaginary. Since Σ𝑜 is an arbitrary irreducible component of Σ𝑌 , it
follows that 𝜇∗𝜔1, . . . , 𝜇

∗𝜔𝑚 are pure imaginary logarithmic forms. The theorem is thus proved
when 𝐺 is semisimple.

Step 2. We assume that 𝐺 is reductive. We shall use the notation introduced in the proof
of Theorem A without recalling them explicitly. Recall that Δ(𝐺) = Δ(D𝐺) × 𝑉 , where 𝑉 is
isometric to R𝑁 , and 𝐺 (𝐾) acts on 𝑉 by translation. Note that 𝑢̃ is the product of a 𝜎-equivariant
pluriharmonic map 𝑢̃0 : 𝑋 → Δ(D𝐺) with logarithmic energy growth, and a 𝜏-equivariant
pluriharmonic map 𝑣̃ ◦ 𝑎̃ : 𝑋 → 𝑉 , also with logarithmic energy growth. Thus, the multivalued
1-form 𝜂 induced by 𝑢̃ is merely the union of the multivalued 1-form 𝜂0 induced by 𝑢̃0, and the
logarithmic 1-forms {𝜁1, . . . , 𝜁𝑘} ⊂ 𝐻0(𝑋,Ω

𝑋
(logΣ)) induced by 𝜕 (𝑣̃ ◦ 𝑎̃). Hence, the spectral

cover 𝜋 : 𝑋sp → 𝑋 with respect to 𝜂 coincides with the spectral cover with respect to 𝜂0, whose
existence is ensured by Step 1. The first two items are proved.

By Step 1, 𝑓 ∗𝜂0 is a finite set of pure imaginary logarithmic 1-forms. Recall that in Theorem A,
we prove that {𝜁1, . . . , 𝜁𝑘} are pure imaginary. Thus, 𝑓 ∗𝜁𝑖 is also pure imaginary for each 𝑖. We
conclude that 𝑓 ∗𝜂 = 𝑓 ∗𝜂0 ∪ { 𝑓 ∗𝜁1, . . . , 𝑓

∗𝜁𝑘} is a set of pure imaginary logarithmic 1-forms. This
completes the proof of the theorem. □

By the proof of Theorem 3.7.(i), if 𝐺 is semi-simple, at each point 𝑥0 of R(𝑢), there exists an
open neighborhood 𝑈 of 𝑥0 such that, 𝜂 is given by holomorphic 1-forms {𝜕𝑢𝛼,1, . . . , 𝜕𝑢𝛼,𝑚},
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where 𝑢𝛼, 𝑗 : 𝑈 → R is defined in (3.4). Let 𝑈𝛼 be a connected component of 𝜋−1
𝑋
(𝑈) introduced

in item (1). Note that

|∇𝑢 |2 =

𝑁∑︁
𝑖=1

|𝑑𝑥𝑖 ◦ 𝑖𝐴𝛼
◦ 𝑢̃ ◦ (𝜋𝑋 |𝑈𝛼

)−1 |2,

where {𝑥1, . . . , 𝑥𝑁 } is some orthogonal coordinates for 𝑉 defined in § 3.2. For any 𝑤 ∈ 𝑊 , note
that {𝑤∗𝑑𝑥1, . . . , 𝑤

∗𝑑𝑥𝑁 } is a orthogonal basis for 𝑇𝑉∗. Hence, by the definition of Φ defined in
(3.1), we have

𝑚∑︁
𝑗=1

|𝜕𝑢𝛼, 𝑗 | =
∑︁

𝑤∈𝑊𝑣

𝑁∑︁
𝑖=1

|𝑤∗𝜕𝑥𝑖 ◦ 𝑖𝐴𝛼
◦ 𝑢̃ ◦ (𝜋𝑋 |𝑈𝛼

)−1 |2

= |𝑊𝑣 | ·
𝑁∑︁
𝑖=1

|𝜕𝑥𝑖 ◦ 𝑖𝐴𝛼
◦ 𝑢̃ ◦ (𝜋𝑋 |𝑈𝛼

)−1 |2

=
|𝑊𝑣 |

2
|∇𝑢 |2.(3.7)

The following result will be used in § 5.

Lemma 3.8. Let 𝑋 , 𝐺, 𝜚 and 𝑢̃ be as in Theorem A. Then there exists a multivalued logarithmic
1-form 𝜂 on (𝑋, Σ), that is splitting over R(𝑢), such that for any point 𝑥 ∈ R(𝑢), it has a simply
connected open neighborhood𝑈 satisfying:
(i) over𝑈, 𝜂 is represented by some holomorphic 1-forms {𝜔1, . . . , 𝜔𝑁ℓ} on Ω, and

|∇𝑢 |2 = 2
𝑁ℓ∑︁
𝑗=1

|𝜔 𝑗 |2,(3.8)

where 𝑁 is the 𝐾-rank of 𝐺, and ℓ is the cardinality of the vectorial Weyl group𝑊𝑣 of D𝐺.
(ii) There exists a partition of ⊔ℓ

𝑖=1{𝜔𝑖,1, . . . , 𝜔𝑖,𝑁 } = {𝜔1, . . . , 𝜔ℓ𝑁 } satisfying
• for each 𝑖 = 2, . . . , ℓ, there exists a constant matrix 𝑀𝑖 ∈ O(𝑁,R) such that[

𝜔𝑖,1, · · · , 𝜔𝑖,𝑁

]
=
[
𝜔1,1, · · · , 𝜔1,𝑁

]
· 𝑀𝑖 .(3.9)

• If there exists some apartment 𝐴 of Δ(𝐺), such that 𝑢̃(𝑈𝛼) ⊂ 𝐴, where𝑈𝛼 is some con-
nected component of 𝜋−1

𝑋
(𝑈), then for any isometry 𝑖 : 𝐴→ R𝑁 , denoting (𝑢1, . . . , 𝑢𝑁 ) =

𝑖 ◦ 𝑢̃ ◦ (𝜋𝑋 |𝑈𝛼
)−1 : 𝑈 → R𝑁 , we have[
𝜕𝑢1, · · · , 𝜕𝑢𝑁

]
=
[
𝜔1,1, · · · , 𝜔1,𝑁

]
· 𝑀 · 1

√
ℓ

(3.10)

for some constant matrix 𝑀 ∈ O(𝑁,R).
(iii) For each 𝑝 ∈ {1, . . . , 𝑛}, 𝜂 induces a multivalued section 𝜂𝑝 on Ω

𝑝

𝑋
(logΣ).

Proof. We shall use the notations in Step 2 of the proof of Theorem 3.7. For each point 𝑥0 of R(𝑢0),
there exists a simply connected neighborhood 𝑈 of 𝑥0 such that, for some connected component
𝑈𝛼 of 𝜋−1

𝑋
(𝑈), 𝑢̃0(𝑈𝛼) is contained in some apartment 𝐴 of Δ(D𝐺). Let (𝑊𝑣 , 𝑉) be data of

D𝐺 defined in § 3.2. Let 𝑁 ′ be the dimension of Δ(D𝐺) and ℓ be the cardinality of 𝑊𝑣 . Fix
orthonormal coordinates (𝑥1, . . . , 𝑥𝑁 ′) for 𝑉 .

We use the notations in § 3.2. Define a set of holomorphic 1-forms on 𝑈 with a partition as
follows:

⊔𝑤∈𝑊𝑣 { 1
√
ℓ
𝑤∗𝜕𝑥1 ◦ 𝑖𝐴 ◦ 𝑢̃0 ◦ (𝜋𝑋 |𝑈𝛼

)−1, . . . ,
1
√
ℓ
𝑤∗𝜕𝑥𝑁 ′ ◦ 𝑖𝐴 ◦ 𝑢̃0 ◦ (𝜋𝑋 |𝑈𝛼

)−1,
1
√
ℓ
𝜉1, . . . ,

1
√
ℓ
𝜉𝑘},

(3.11)

where 𝜉1, . . . , 𝜉𝑘 are logarithmic 1-forms on (𝑋, Σ) induced by the pluriharmonic map 𝑣̃ ◦ 𝑎̃. Thus
we have 𝑁 = 𝑁 ′+ 𝑘 , as 𝑁 is also the dimension of Δ(𝐺). By Step 1 of the proof of Theorem 3.7.(i),
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(3.11) gives rise to a multivalued logarithmic 1-form on (𝑋, Σ), denoted by 𝜂. By (3.7), we have

|∇𝑢0 |2 = 2
𝑁 ′∑︁
𝑖=1

1
|𝑊𝑣 |

��𝜕𝑥1 ◦ 𝑖𝐴 ◦ 𝑢̃0 ◦ (𝜋𝑋 |𝑈𝛼
)
��2 + · · · +

��𝜕𝑥𝑁 ′ ◦ 𝑖𝐴 ◦ 𝑢̃0 ◦ (𝜋𝑋 |𝑈𝛼
)
��2

Note that 𝜕𝑣̃ ◦ 𝑎̃ = (𝜋∗
𝑋
𝜉1, . . . , 𝜋

∗
𝑋
𝜉𝑘). Since |∇𝑢 |2 = |∇𝑢0 |2 + |∇𝑣̃ ◦ 𝑎̃ |2, it yields (3.8).

Note that 𝑤 is an isometry of 𝑉 . Lemma 3.8.(ii) follows directly from the construction of 𝜂 in
(3.11).

Let us prove Lemma 3.8.(iii). For each 𝐼 = {𝑖1, . . . , 𝑖𝑝} with 1 ≤ 𝑖1 < · · · < 𝑖𝑝 ≤ 𝑛, we define a
set of holomorphic 𝑝-forms with a partition given by

⊔ℓ
𝑗=1{±𝜔 𝑗 ,𝑖1 ∧ · · · ∧ 𝜔 𝑗 ,𝑖𝑝 }1≤𝑖1<· · ·<𝑖𝑝≤𝑁 .

By (3.11), this is a well-defined splitting multivalued 𝑝-form on R(𝑢), denoted by 𝜂𝑝.
We fix a smooth hermitian metric ℎ for the vector bundle Ω

𝑋
(logΣ). It induces a hermitian

metric ℎ𝑝 on Ω
𝑝

𝑋
(logΣ). Since the support |𝑍𝜂 | is compact, there exists a uniform constant 𝐶 > 0

such that ��𝜔 𝑗 ,𝑖1 ∧ · · · ∧ 𝜔 𝑗 ,𝑖𝑝 (𝑥)
��
ℎ𝑝 ≤ 𝐶, ∀ 𝑥 ∈ 𝑈 ∩ R(𝑢)

for each 𝐼. Let 𝑃𝜂𝑝 (𝑇) = 𝑇𝑀 +𝜎1𝑇
𝑀−1 + · · · +𝜎𝑀 be the characteristic polynomial of 𝜂𝑝 defined

in § 3.1, with 𝜎𝑖 ∈ 𝐻0(R(𝑢), Sym𝑖Ω
𝑝

𝑋
(logΣ) |R(𝑢) ). Then the norm of 𝜎𝑖 with respect to the

metric ℎ𝑝 is uniformly bounded. By the Hartogs theorem in [Shi68], each 𝜎𝑖 extends to a section
of Sym𝑖Ω

𝑝

𝑋
(logΣ) on 𝑋 . The conditions in Proposition 3.2 are fulfilled. We conclude that 𝜙𝑝

extends to a multivalued section of Ω𝑝

𝑋
(logΣ) on 𝑋 .The last assertion is proved. □

Remark 3.9. When 𝑋 is a compact Kähler manifold, spectral covers associated with equivariant
harmonic maps to Euclidean buildings were systematically studied by Eyssidieux in [Eys04]. The
construction of spectral covers presented here follows the approach of Klingler [Kli13], while the
definition of multivalued 1-forms builds on the ideas of [Eys04], which differ slightly from those
in [BDDM22, §4].

4. Unicity of pluriharmonic maps

4.1. Uniqueness of energy density function. Throughout this subsection, 𝐺 is a reductive alge-
braic group defined over a non-archimedean local field 𝐾 . We begin with the following definition.

Definition 4.1 (Directional energy). Let 𝑢 : Ω → Δ(𝐺) be a locally finite energy map from a
Riemannian domain Ω. For 𝑉 ∈ Γ(Ω, 𝑇Ω), the directional energy defined in [KS93, Theorem
1.9.6] is denoted by |𝑢∗(𝑉) |2. By [KS93, Lemma 1.9.3 and Theorem 2.3.2],

|𝑢∗(𝑉) |2(𝑝) = lim
𝑡→0

𝑑2(𝑢(𝑝), 𝑢(exp𝑝 (𝑡𝑉)))
𝑡2

for a.e. 𝑝 ∈ Ω.

Remark 4.2. Let 𝑀 be a Riemannian manifold, 𝜚 : 𝜋1(𝑀) → 𝐺 (𝐾) be a representation and
𝑢 : 𝑀 → Δ(𝐺) be a 𝜚-equivariant map. Given a vector field 𝑉 defined on 𝑀 , lift it to 𝑀̃ and
denote it again by 𝑉 . Then the energy density function |𝑢∗(𝑉) |2 is a 𝜋1(𝑀)-invariant function on
𝑀̃ and thus descends to a well-defined 𝐿1

loc-function on 𝑀 .

Proposition 4.3. Let 𝑋 be a smooth quasi-projective variety of dimension 𝑛 and 𝜚 : 𝜋1(𝑋) → 𝐺 (𝐾)
be a representation. If 𝑢̃, 𝑣̃ : 𝑋 → Δ(𝐺) are two 𝜚-equivariant pluriharmonic maps of logarithmic
energy growth, then we have
(i) 𝑑 (𝑢̃, 𝑣̃) = 𝑐 for some constant 𝑐 ≥ 0;
(ii) |𝑢̃∗(𝑉) |2 = |𝑣̃∗(𝑉) |2 for any holomorphic vector field 𝑉 ∈ Γ(Ω, 𝑇Ω), where Ω ⊂ 𝑋 is an open

set.

Proof. If dimC 𝑋 = 1, then the proposition follows from [DM23a, Lemma 5.8]. Assume by
induction that the assertions are both true if dim 𝑋 = 𝑛 − 1. We take a smooth projective
compactification 𝑋 for 𝑋 such that Σ := 𝑋\𝑋 is a simple normal crossing divisor.
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We fix an projective embedding 𝜄 : 𝑋 ↩→ P𝑁 and denote by 𝐿 := 𝜄∗OP𝑁 (3). Let U(𝑞) ⊂
𝐻0(𝑋, 𝐿) be defined in Proposition 1.7. For any element 𝑠 ∈ 𝐻0(𝑋, 𝐿), let 𝜄𝑌𝑠 : 𝑌𝑠 → 𝑋 be the
inclusion map defined in Proposition 1.7.

Choose any 𝑞 ∈ 𝑋 , and any 𝑞 ∈ 𝑋 such that 𝜋𝑋 (𝑞) = 𝑞. By Proposition 1.7.(iii), for any section
𝑠 ∈ U(𝑞), letting 𝜄𝑌𝑠 : 𝑌𝑠 → 𝑋 be the lift of 𝜄𝑌𝑠 between universal covers, we have 𝜋−1

𝑋
(𝑞) ⊂ 𝜄𝑌𝑠 (𝑌𝑠).

Hence there exists 𝑞𝑠 ∈ 𝑌𝑠 such that 𝜄𝑌𝑠 (𝑞𝑠) = 𝑞. By Theorem A, the 𝜚𝑌𝑠 -equivariant maps 𝑢𝑌𝑠
and 𝑣𝑌𝑠 defined in § 1.2 are pluriharmonic maps of logarithmic energy. The inductive hypothesis
implies that there exists a constant 𝑐𝑌𝑠 ≥ 0 such that 𝑑

(
𝑢𝑌𝑠 (𝑦), 𝑣𝑌𝑠 (𝑦)

)
= 𝑐𝑌𝑠 for each 𝑦 ∈ 𝑌𝑠. Since

𝑢𝑌𝑠 = 𝑢̃ ◦ 𝜄𝑌𝑠 and 𝑣𝑌𝑠 = 𝑣̃ ◦ 𝜄𝑌𝑠 , it follows that for any other 𝑠′ ∈ U(𝑞), we have

𝑐𝑌𝑠 = 𝑑
(
𝑢𝑌𝑠 (𝑞𝑠), 𝑣𝑌𝑠 (𝑞𝑠)

)
= 𝑑 (𝑢̃(𝑞), 𝑣̃(𝑞)) = 𝑑

(
𝑢𝑌𝑠′ (𝑞𝑠′), 𝑣𝑌𝑠′ (𝑞𝑠′)

)
= 𝑐𝑌𝑠′ .

Hence 𝑐𝑌𝑠 does not depend on the choice of 𝑠 ∈ U(𝑞), which we shall denote by 𝑐.
Let 𝑝 be any other point in 𝑋 . Then by Proposition 1.7.(ii), there exists 𝑠 ∈ U(𝑞) such that

𝑝 ∈ 𝑌𝑠. By Proposition 1.7.(iii), for any 𝑝 ∈ 𝜋−1
𝑋
(𝑝), there exists 𝑝̃𝑠 ∈ 𝑌𝑠 such that 𝜄𝑌𝑠 ( 𝑝̃𝑠) = 𝑝. It

follows that
𝑑 (𝑢̃(𝑝), 𝑣̃(𝑝)) = 𝑑

(
𝑢𝑌𝑠 (𝑝𝑠), 𝑣𝑌𝑠 (𝑝𝑠)

)
= 𝑐.

Thus, we conclude that 𝑑 (𝑢̃(𝑥), 𝑣̃(𝑥)) ≡ 𝑐 for each 𝑥 ∈ 𝑋 .

Let us prove the second assertion. For any local smooth vector field 𝑉 on 𝑋 , we know that
|𝑢̃∗(𝑉) |2, |𝑣̃∗(𝑉) |2 ∈ 𝐿1

loc, and thus it suffices to prove Proposition 4.3.(ii) over the dense open
subset R(𝑢̃) ∩ R(𝑣̃). Since 𝑢̃ and 𝑣̃ are both smooth over R(𝑢̃) ∩ R(𝑣̃), it suffices to prove that for
any point 𝑞 ∈ R(𝑢̃) ∩ R(𝑣̃), and any 𝑉 ∈ 𝑇𝑞̃𝑋 , we have

|𝑢̃∗(𝑉) |2 = |𝑣̃∗(𝑉) |2.

Set 𝑞 = 𝜋𝑋 (𝑞). By Proposition 1.7.(ii), there exists 𝑠 ∈ U(𝑞) such that (𝜋𝑋)∗𝑉 ∈ 𝑇𝑞𝑌𝑠. Hence
𝑉 ∈ 𝑇𝑞̃ (𝑌𝑠).

By the inductive hypothesis, we have

|𝑢̃∗(𝑉) |2 = | (𝑢𝑌𝑠 )∗(𝑉) |2 = | (𝑣𝑌𝑠 )∗(𝑉) |2 = |𝑣̃∗(𝑉) |2.

This yields the second assertion. The proposition is proved. □

4.2. Proof of unicity theorem. Recall the following definition from [GS92].

Definition 4.4 ( [GS92], Section 6). We say that a nonpositively curved 𝑁-dimensional complex
F is 𝐹-connected if any two adjacent simplices are contained in a totally geodesic subcomplex 𝐴
which is isometric to a subset of the Euclidean space R𝑁 .

The regular set and the singular set of a harmonic map into a 𝐹-connected complex is defined
analogously as in Definition 1.2.

A neighborhood of a point 𝑃0 ∈ Δ(𝐺) is isometric to a neighborhood of the origin in the tangent
cone 𝑇𝑃0Δ(𝐺). Two simplices (which are actually simplicial cones) in 𝑇𝑃0Δ(𝐺) are contained in
a totally geodesic subcomplex 𝑇𝑃0𝐴 where 𝐴 is an apartment of Δ(𝐺). In other words, 𝑇𝑃0Δ(𝐺)
is an 𝑁-dimensional 𝐹-connected complex. Thus, when we study the local behavior of harmonic
maps 𝑢 : Ω → Δ(𝐺) at a point 𝑥0 ∈ Ω, we can assume that 𝑢 maps into the 𝑁-dimensional,
𝐹-connected complex 𝑇𝑃0Δ(𝐺) where 𝑃0 = 𝑢(𝑥0).

Lemma 4.5 ( [GS92], proof of Proposition 2.2). Let 𝑢 : Ω → F be a harmonic map from an
𝑛-dimensional Riemannian domain to a 𝐹-connected complex and 𝑥0 ∈ Ω. Then there exists a
constant 𝑐 > 0 and 𝜎0 > 0 such that

𝜎 →
𝑒𝑐𝜎

2
𝜎

∫
𝐵𝜎 (𝑥0 )

|∇𝑢 |2𝑑𝜇

min
𝑄∈Δ(𝐺)

∫
𝜕𝐵𝜎 (𝑥0 )

𝑑2(𝑢, 𝑄)𝑑Σ

is a non-decreasing functions in the interval (0, 𝜎0). □
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Definition 4.6. For 𝑢 and 𝑥0 as in Lemma 4.5, we set

Ord𝑢 (𝑥0) = lim
𝜎→0

𝑒𝑐𝜎
2
𝜎

∫
𝐵𝜎 (𝑥0 )

|∇𝑢 |2𝑑𝜇

min
𝑄∈Δ(𝐺)

∫
𝜕𝐵𝜎 (𝑥0 )

𝑑2(𝑢, 𝑄)𝑑Σ
.

As a limit of non-decreasing sequence of functions, 𝑥 ↦→ Ord𝑢 (𝑥) is a upper semicontinuous
function. Thus, we have the following:
(a) By [GS92, Lemma 1.3], Ord𝑢 (𝑥) ≥ 1 for all 𝑥 ∈ Ω.
(b) By [GS92, Theorem 6.3.(i)], if 𝑥𝑖 → 𝑥 and Ord𝑢 (𝑥𝑖) > 1, then Ord𝑢 (𝑥) > 1.

Lemma 4.7 ( [GS92], proof of Theorem 6.4). Let 𝑢 be as in Lemma 4.5 and S̃0(𝑢) to be the set of
points 𝑥 ∈ Ω such that Ord𝑢 (𝑥) > 1. Then S̃0(𝑢) is a closed set such that dimH (S̃0(𝑢)) ≤ 𝑛−2. □

Lemma 4.8 ( [GS92], proof of Proposition 2.2, Theorem 2.3). Let 𝑢 and 𝑥0 be as in Lemma 4.5
and let 𝛼 := Ord𝑢 (𝑥0). There exists a constant 𝑐 > 0 and 𝜎0 > 0 such that

𝜎 → 𝑒𝑐𝜎
2

𝜎𝑛−1+2𝛼

∫
𝜕𝐵𝜎 (𝑥0 )

𝑑2(𝑢, 𝑢(𝑥0))𝑑Σ

and

𝜎 → 𝑒𝑐𝜎
2

𝜎𝑛−2+2𝛼

∫
𝐵𝜎 (𝑥0 )

|∇𝑢 |2𝑑𝜇

are non-decreasing functions in the interval (0, 𝜎0). □

Remark 4.9. For a finite energy map 𝑢 : Ω → F into a 𝐹-connected complex, |∇𝑢 |2 ∈ 𝐿1
loc is not

necessarily defined at all points of Ω. On the other hand, it follows from Lemma 4.8 that for a
harmonic map 𝑢, we can define |∇𝑢 |2 at every point of 𝑥0 ∈ Ω by setting

|∇𝑢 |2(𝑥0) = lim
𝜎→0

1
𝑐𝑛𝜎

𝑛

∫
𝐵𝜎 (𝑥0 )

|∇𝑢 |2 𝑑𝜇

where 𝑐𝑛𝜎𝑛 is the volume of a ball or radius 𝜎 in Euclidean space.

Let 𝑢 : Ω → Δ(𝐺) be a harmonic map and 𝑥0 ∈ Ω. Use normal coordinates centered at 𝑥0
to identify 𝑥0 = 0 and let B𝑟 (0) = {𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 : |𝑥 | < 𝑟}. As mentioned above,
we can identify a neighborhood of 𝑢(0) with a neighborhood of the origin O of the tangent cone
𝑇𝑢(0)Δ(𝐺). For 𝜇 > 0 and 𝑃 ∈ 𝑇𝑢(0)Δ(𝐺), denote by 𝜇𝑃 to be the point in 𝑇𝑢(0)Δ(𝐺) on the
geodesic ray emanating from O and going through 𝑃 at a distance 𝜇𝑑 (O, 𝑃) from O. Let

𝜇(𝜎) =
(
𝜎1−𝑛

∫
𝜕𝐵𝜎 (0)

𝑑2(𝑢, 𝑢(0))𝑑Σ
)−1

.

Definition 4.10. The blow up map is defined by

𝑢𝜎 : B1(0) → 𝑇𝑢(0)Δ(𝐺), 𝑢𝜎 (𝑥) = 𝜇(𝜎)𝑢(𝜎𝑥).

By [GS92, Proposition 3.3] and the paragraph proceeding it, there exists a sequence 𝜎𝑖 → 0
such that 𝑢𝜎𝑖

converges locally uniformly to a non-constant homogeneous harmonic map 𝑢∗ of
degree 𝛼 := Ord𝑢 (𝑥0).

If Ord𝑢 (𝑥0) = 1, then have the following:
(a) By [GS92, Proposition 3.1], there exists 𝑚 ∈ {1, . . . ,min{𝑛, 𝑁}} such that

𝑢∗ = 𝐽 ◦ 𝑣
��
𝐵1 (0)

for an isometric and totally geodesic embedding 𝐽 : R𝑚 → 𝑇𝑢(0)Δ(𝐺) and a linear map
𝑣 : R𝑛 → R𝑚 of full rank.

(b) By [GS92, Lemma 6.2], the union of all 𝑁-flats of 𝑇𝑢(0)Δ(𝐺) containing 𝐽 (R𝑚) is isometric
to R𝑚 × F where F is a (𝑁 − 𝑚)-dimensional, 𝐹-connected complex.
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(c) By [GS92, Theorem 6.3], there exists 𝜎0 > 0 such that 𝑢(𝐵𝜎0 (𝑥0)) ⊂ R𝑚 × F . If we write

(4.1) 𝑢 = (𝑢1, 𝑢2) : 𝐵𝜎0 (𝑥0) → R𝑚 × F ,

then 𝑢1 : 𝐵𝜎0 (𝑥0) → R𝑚 is a smooth harmonic map of rank 𝑚 and 𝑢2 : 𝐵𝜎0 (𝑥0) → F is a
harmonic map with 𝛼2 := Ord𝑢

2 (𝑥0) ≥ 1 + 𝜖 for 𝜖 > 0.

Definition 4.11. Let 𝑢 : Ω → Δ(𝐺) be a harmonic map. For 𝑥0 ∈ S̃0(𝑢), define 𝑚𝑥0 = 0. For
𝑥0 ∈ Ω\S̃(𝑢), let 𝑚𝑥0 be the integer 𝑚 in eq. (4.1). Let 𝑀 := sup𝑥0∈Ω 𝑚𝑥0 . We say the point
𝑥0 ∈ Ω is a critical point if 𝑚𝑥0 < 𝑀 . We denote the set of critical points by S̃(𝑢). Define
R̃ (𝑢) = Ω\S̃(𝑢).

Lemma 4.12. If 𝑢 : Ω → Δ(𝐺) is a non-constant harmonic map, then R̃ (𝑢) ⊂ R(𝑢).

Proof. Let 𝑥0 ∈ R̃(𝑢); i.e. 𝑚𝑥0 = 𝑀 where 𝑀 is as in Definition 4.11 and there exists 𝜎 > 0 such
that we can write

(4.2) 𝑢 = (𝑢1, 𝑢2) : 𝐵𝜎 (𝑥0) → R𝑀 × F .

By choosing 𝜎 > 0 smaller if necessary, we can assume that 𝑢1 is of rank 𝑀 at all points
𝑥 ∈ 𝐵𝜎0 (𝑥0). Therefore, the restriction of (4.2) to 𝐵𝑟 (𝑥) is an expression of 𝑢 as 𝑢 = (𝑢1, 𝑢2) as in
eq. (4.1) in 𝐵𝑟 (𝑥) ⊂ 𝐵𝜎0 (𝑥0). By eq. (4.3), |∇𝑢2 |2(𝑥) = 0 for all 𝑥 ∈ 𝐵𝜎0 (𝑥0). Thus, we conclude
that 𝑢2 ≡ 𝑃0 for some 𝑃0 ∈ F . Hence 𝑢(𝐵𝜎 (𝑥0)) ⊂ R𝑀 ×{𝑃} which implies 𝐵𝜎 (𝑥0) ⊂ R(𝑢). □

Lemma 4.13. Let 𝑢 and 𝑥0 be as in Lemma 4.5. Then

Ord𝑢 (𝑥0) > 1 ⇔ |∇𝑢 |2(𝑥0) = 0.

Proof. First, assume 𝛼 := Ord𝑢 (𝑥0) > 1. Lemma 4.8 implies that there exists a constant 𝐶 > 0
and 𝜎0 > 0 such that for 𝜎 ∈ (0, 𝜎0)∫

𝜕𝐵𝜎 (𝑥0 )
𝑑2(𝑢, 𝑢(𝑥0))𝑑Σ ≤ 𝐶𝜎𝑛−1+2𝛼.

By Remark 4.9, the above inequality and 𝛼 > 1 imply (with 𝑐𝑛 equal to the volume of the unit ball
in R𝑛)

(4.3) |∇𝑢 |2(𝑥0) = lim
𝜎→0

1
𝑐𝑛𝜎

𝑛

∫
𝐵𝜎 (𝑥0 )

|∇𝑢 |2 𝑑𝜇 = lim
𝜎→0

1
𝑐𝑛𝜎

𝑛+1

∫
𝜕𝐵𝜎 (𝑥0 )

𝑑2(𝑢, 𝑢(𝑥0))𝑑Σ = 0

Next, assume Ord𝑢 (𝑥0) = 1. Use normal coordinates centered at 𝑥0 and write 𝑢 = (𝑢1, 𝑢2) as in
eq. (4.1). Define 𝜃𝑢 = (𝜃𝑢1, 𝜃𝑢

2) by setting 𝜃𝑢(𝑥) = 𝜃−1𝑢(𝜃𝑥). From [GS92, (5.14)], 𝜃𝑢 → 𝐿

uniformly on compact subsets to a non-constant homogeneous degree 1 map 𝐿. Furthermore, since
𝛼2 := Ord𝑢

2 (𝑥0) > 1 (cf. (c)), arguing analogously as (4.3), we get

lim
𝜃→0

∫
𝜕𝐵1 (0)

𝑑2(𝜃𝑢2, 𝜃𝑢
2(0))𝑑Σ = lim

𝜃→0

1
𝜃𝑛+1

∫
𝜕𝐵𝜃 (0)

𝑑2(𝑢2, 𝑢2(0))𝑑Σ = lim
𝜃→0

𝐶𝜃2𝛼2−2 = 0.

By the maximum principle, this implies that 𝜃𝑢
2 → 𝜃𝑢

2(0) = 𝑢2(0) uniformly on compact subsets
of 𝐵1(0). This in turn implies that 𝜃𝑢

1 → 𝐿 uniformly on compact subsets of 𝐵1(0). Since 𝜃𝑢
1

is a smooth harmonic map, 𝜃𝑢
1 → 𝐿 in 𝐶𝑘 for any 𝑘 in any compact subset of 𝐵1(0). Since

|∇𝐿 |2(0) > 0, we also have |∇𝑢1 |2(0) = |∇𝜃𝑢
1 |2(0) > 0. Therefore, |∇𝑢 |2 > 0. □

Lemma 4.14. The set of critical points S̃(𝑢) is a closed set of Hausdorff dimension at most 𝑛 − 2.

Proof. By Lemma 4.12, S̃(𝑢) = S(𝑢) ∪ (S̃(𝑢) ∩ R(𝑢)). By [GS92, Theorem 6.4], S(𝑢) is a
closed set of Hausdorff dimension at most 𝑛 − 2. Thus, the assertion follows from the fact that the
Hausdorff dimension of the set of critical points of a harmonic map into Euclidean space is at most
𝑛 − 2. □

Lemma 4.15. For a non-constant harmonic map 𝑢 : Ω → Δ(𝐺), let Ω∗(𝑢) be the set of points
𝑥 ∈ Ω such that there exists 𝑟 > 0 and a chamber 𝐶 such that 𝑢(𝐵𝑟 (𝑥)) ⊂ 𝐶. Then Ω∗(𝑢) is an
open set of full measure in Ω.
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Proof. The openness of Ω∗(𝑢) follows from its definition. Denote the complement of Ω∗(𝑢) by
Ω∗(𝑢)𝑐. We want to show that Ω∗(𝑢)𝑐 has zero measure. Since S̃(𝑢) has zero measure, it is
sufficient to show that Ω∗(𝑢)𝑐 ∩ R̃(𝑢) has zero measure.

On the contrary, assume that Ω∗(𝑢)𝑐 ∩ R̃(𝑢) has positive measure. Then there exists a point
𝑥0 ∈ Ω∗(𝑢)𝑐 ∩ R̃(𝑢) such that

(4.4) lim
𝜚→0

𝜇(𝐵𝜚 (𝑥0) ∩Ω∗(𝑢)𝑐)
𝜇(𝐵𝜚 (𝑥0))

= lim
𝜚→0

𝜇(𝐵𝜚 (𝑥0) ∩Ω∗(𝑢)𝑐 ∩ R̃(𝑢))
𝜇(𝐵𝜚 (𝑥0))

= 1.

Since 𝑥0 ∈ R̃(𝑢), Lemma 4.12 implies 𝑥0 ∈ R(𝑢). Thus, there exists a neighborhood N of 𝑥0 and
a totally geodesic subcomplex 𝐴𝑥0 isometric to R𝑁 such that 𝑢(N) ⊂ 𝐴. By choosing N smaller
if necessary, we can assume that 𝑢 |N has no critical points since 𝑥0 ∈ R̃(𝑢).

For 𝑘 = 0, . . . , 𝑁 , denote the 𝑘-skeleton of Δ(𝐺) by Δ(𝐺) (𝑘 ) . Let 𝑘 be the smallest integer such
that 𝑢(N) ⊂ Δ(𝐺) (𝑘 ) . Since 𝑢 is not locally constant (cf. [GS92, Proposition 4.3]), 𝑘 ≥ 1.

First, assume 𝑢(N) ∩ Δ(𝐺) (𝑘−1) = ∅. Let 𝐶 be a chamber such that 𝑢(𝑥0) ∈ 𝐶̄. Since
𝑢(N) ⊂ Δ(𝐺) (𝑘 ) and 𝑢(N) ∩ Δ(𝐺) (𝑘−1) = ∅, we conclude that 𝑢(N) is a 𝑘-dimensional face
of 𝐶̄. Thus, 𝑢(N) ⊂ 𝐶̄. This shows that, for 𝜚 > 0 sufficiently small 𝐵𝜚 (𝑥0) ⊂ N ⊂ Ω∗(𝑢),
contradicting eq. (4.4).

Next, assume 𝑢(N) ∩Δ(𝐺) (𝑘−1) ≠ ∅. Since N has no critical points of 𝑢, (𝑢 |N)−1(Δ(𝐺) (𝑘−1) )
is a union of smooth (𝑛−1)-dimensional submanifolds. For any point 𝑥 ∈ N\(𝑢 |N)−1(Δ(𝐺) (𝑘−1) ),
there exists 𝑟 > 0 and a chamber 𝐶 such that 𝑢(𝐵𝑟 (𝑥)) ⊂ 𝐶. Thus, N\(𝑢 |N)−1(Δ(𝐺) (𝑘−1) ) ⊂
Ω∗(𝑢), again contradicting eq. (4.4). □

Remark 4.16. Note that Lemma 4.15 is of independent interest. For instance, it played a crucial
role in [DW24a] in the study of Kollár’s conjecture on the positivity of the holomorphic Euler
characteristic for varieties with large fundamental groups.

Proposition 4.17. Let 𝑢0, 𝑢1 : Ω → Δ(𝐺) be harmonic maps from a bounded Riemannian domain.
If 𝑑 (𝑢0, 𝑢1) = 𝑐 for some constant 𝑐 ≥ 0 and |∇𝑢0 |2 = |∇𝑢1 |2, then for almost all points 𝑥 ∈ 𝑋 ,
there exists 𝑟 > 0 satisfying the following:
(i) There is a 𝑁-flat 𝐴 containing both 𝑢0(𝐵𝑟 (𝑥)) and 𝑢1(𝐵𝑟 (𝑥));
(ii) If we fix an isometry 𝜈 : 𝐴 → R𝑁 , then 𝜈 ◦ 𝑢0 : 𝐵𝑟 (𝑥) → R𝑁 is a translation of 𝜈 ◦ 𝑢1 :

𝐵𝑟 (𝑥) → R𝑁 .

Proof. For 𝑖 = 0, 1, let Ω∗(𝑢𝑖) be the open set of full measure as in Lemma 4.15. Thus, Ω∗(𝑢0) ∩
Ω∗(𝑢1) is of full measure. Lemma 4.15 implies that, for any 𝑥0 ∈ Ω∗(𝑢0) ∩ Ω∗(𝑢1), there exists
𝑟 > 0 and a chamber 𝐶𝑖 such that 𝑢𝑖 (𝐵𝑟 (𝑥0)) ⊂ 𝐶𝑖 for 𝑖 = 0, 1. Let 𝐴 be 𝑁-flat containing
chambers 𝐶0 and 𝐶1 and 𝜈 : 𝐴 → R𝑁 be an isometry. Thus, 𝑣 ◦ 𝑢0 and 𝑣 ◦ 𝑢1 are harmonic
maps into R𝑁 . The assumption that 𝑑 (𝑢0, 𝑢1) = 𝑐 implies that |𝜈 ◦ 𝑢0(𝑥) − 𝜈 ◦ 𝑢1(𝑥) | = 𝑐. Thus,
0 = Δ|𝜈 ◦ 𝑢0 − 𝜈 ◦ 𝑢1 |2 = 2 |∇(𝜈 ◦ 𝑢0 − 𝜈 ◦ 𝑢1) |2 which implies 𝜈 ◦ 𝑢0 is a translation of 𝜈 ◦ 𝑢1. □

We are able to prove Theorem B.

Proof of Theorem B. The assertion follows immediately from Proposition 4.3 and Proposition 4.17
below. □

Proof of Theorem C.(ii). By Theorem B, there exists a dense open subset 𝑋◦ ⊂ 𝑋 of full Lebesgue
measure such that, for any 𝑥 ∈ 𝑋◦,
(a) there exists an open neighborhood Ω of 𝑥 and an apartment 𝐴 of Δ(𝐺) such that 𝑢̃𝑖 (Ω) ⊂ 𝐴

for 𝑖 = 0, 1;
(b) the map 𝑢̃0 |Ω : Ω → 𝐴 is a translate of 𝑢̃1 |Ω : Ω → 𝐴

By the construction in [BDDM22], the multivalued 1-forms 𝜂𝑖 induced 𝑢̃𝑖 for 𝑖 = 0, 1 are equal
over 𝑋◦, and splitting over 𝑋◦. By Definition 3.1, we conclude that 𝜂1 = 𝜂2 over the entire 𝑋 . The
claim is proved. □

5. On the singular set of harmonic maps into Euclidean buildings

In this section, we apply Lemma 3.8 and the results from § 4.2 to prove Theorem A.(iv),
following the idea by Eyssidieux in [Eys04, Proposition 1.3.3].



20 Y. DENG AND C. MESE

Theorem 5.1 (=Theorem A.(iv)). Let 𝑋 , 𝜚, 𝐺 and 𝑢̃ be as in Theorem A. Then the singular set
S(𝑢) defined in Definition 1.2 is contained in a proper Zariski closed subset of 𝑋 .

Proof. We assume that 𝑢̃ is non-constant. We shall use the notions in § 4.2 with Ω being 𝑋 . Let
𝑀 be the positive integer defined in Definition 4.11. Let 𝜂 be the logarithmic multivalued 1-form
induced by 𝑢̃ defined in Lemma 3.8. Let 𝑍𝜂 =

∑𝑘
𝑖=1 𝑛𝑖𝑍𝑖 be the formal sum corresponding to

𝜂 defined in Definition 3.1, where each 𝑍𝑖 is an irreducible closed subvariety of 𝐸 such that the
natural map 𝑍𝑖 → 𝑋 is surjective and finite. Let |𝑍𝜂 | = ∪𝑘

𝑖=1𝑍𝑖 ⊂ Ω
𝑋
(logΣ) be the support of 𝑍𝜂 .

Let 𝑀 be the positive integer defined in Definition 4.11. Consider the holomorphic bundle
𝐸 := Ω𝑀

𝑋
(logΣ) on 𝑋 . By Lemma 3.8.(iii), 𝜂 induces a multivalued section 𝜂𝑀 of 𝐸 . Let

|𝑍𝜂𝑀 | ⊂ 𝐸 be the support of the formal sum 𝑍𝜂𝑀 induced by 𝜂𝑀 defined in Definition 3.1. Let
𝑋
◦ be the set of points 𝑥 in 𝑋 such that |𝑍𝜂𝑀 |𝑥 ⊄ {0}. We shall prove that the Zariski open subset

𝑋
◦ is dense in 𝑋 .
By our definition of 𝑀 in Definition 4.11 and Lemma 4.12, for any point 𝑥0 ∈ R̃(𝑢), there exists

𝑟 > 0 such that:
(1) for some connected component Ω of 𝜋−1

𝑋
(𝐵𝑟 (𝑥0)), 𝜋𝑋 |Ω : Ω → 𝐵𝑟 (𝑥0) is an isomorphism,

where 𝐵𝑟 (𝑥0) is the geodesic ball centered at 𝑥0 of radius 𝑟 .
(2) We have the decomposition

𝑢̃ ◦ (𝜋−1
𝑋 |Ω) |𝐵𝑟 (𝑥0 ) = (𝑢1, 𝑢2) : 𝐵𝑟 (𝑥0) → R𝑀 × {𝑃0},

where 𝑢1 is a harmonic map with rank 𝑀 at each point of 𝐵𝑟 (𝑥0).
By Lemma 3.8.(ii), 𝜂 is represented by 𝜕𝑢1 up to some orthogonal transformation and rescaling.
It follows that |𝑍𝜂𝑀 |𝑥 is not {0} for every 𝑥 ∈ 𝐵𝑟 (𝑥0). Hence we have

R̃ (𝑢) ⊂ 𝑋
◦
,(5.1)

which implies that 𝑋◦ is non-empty. Since 𝑋◦ is Zariski open in 𝑋 , it follows that 𝑋◦ := 𝑋 ∩ 𝑋◦

is a dense and Zariski open subset of 𝑋 . The theorem follows from Lemma 4.12 together with
Lemma 5.2 below. □

Lemma 5.2. We have S̃(𝑢) = 𝑋\𝑋◦.

Proof. Let 𝑥0 ∈ 𝑋 . If Ord𝑢 (𝑥0) > 1, then |∇𝑢 |2(𝑥0) = 0 by Lemma 4.13. If Ord𝑢 (𝑥0) = 1, then we
apply Item (c) above (4.2). Thus, in either case, there exists 𝑟 > 0 and an 𝐹-connected complex F
such that
(a) for some connected component Ω of 𝜋−1

𝑋
(𝐵𝑟 (𝑥0)), 𝜋𝑋 |Ω : Ω → 𝐵𝑟 (𝑥0) is an isomorphism.

(b) We have

(5.2) 𝑢̃ ◦ (𝜋−1
𝑋 |Ω) |𝐵𝑟 (𝑥0 ) = (𝑢1, 𝑢2) : 𝐵𝑟 (𝑥0) → R𝑘 × F ,

such that 𝑢1 : 𝐵𝑟 (𝑥0) → R𝑘 is a smooth pluriharmonic map with rank at each point of 𝐵𝜎 (𝑥0)
equal to 𝑘 (see the proof of Lemma 4.12) and 𝑢2 : 𝐵𝑟 (𝑥0) → F is a pluriharmonic map with
Ord𝑢

2 (𝑥0) ≥ 1 + 𝜀 for some 𝜀 > 0 and |∇𝑢2 | (𝑥0) = 0 by Lemma 4.13. Here, we are using the
following convention: If 𝑘 = 𝑀 , then 𝑢2 is a constant map, and if 𝑘 = 0, then (𝑢1, 𝑢2) = 𝑢2.

Note that F has an Euclidean building structure. By the proof of Theorem 3.7.(i) and Lemma 3.8,
the pluriharmonic map 𝑢2 in (5.2) induces a multivalued 1-form 𝜓0 on 𝐵𝑟 (𝑥0) satisfying the
properties in Lemma 3.8. Then for each 𝑥1 ∈ 𝐵𝑟 (𝑥0) ∩ R(𝑢), it has a neighborhood Ω𝑥1 over
which the multivalued 1-form 𝜓 are given by holomorphic 1-forms ⊔ℓ

𝑖=1{𝜓𝑖,1, . . . , 𝜓𝑖,𝑁−𝑘}, that is
the partition of 𝜓0 in Lemma 3.8.(ii). By (3.8), one has

|∇𝑢2 |2 = 2
ℓ∑︁
𝑖=1

𝑁−𝑘∑︁
𝑗=1

|𝜓𝑖, 𝑗 |2.(5.3)

We define𝜓𝑖,𝑁−𝑘+ 𝑗 := 1√
ℓ
𝜕𝑢1

𝑗
for each 𝑖 ∈ {1, . . . , ℓ} and 𝑗 ∈ {1, . . . , 𝑘}. Therefore,⊔ℓ

𝑖=1{𝜓𝑖,1, . . . , 𝜓𝑖,𝑁 }
is a multivalued 1-form associated with (𝑢1, 𝑢2) defined in Lemma 3.8.
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We can shrink Ω𝑥1 such that 𝜂 is given by holomorphic 1-forms ⊔ℓ′

𝑖=1{𝜔𝑖,1, . . . , 𝜔𝑖,𝑁 } on Ω𝑥1 ,
that is the partition of 𝜂 in Lemma 3.8.(ii). Hence, by (3.9) and (3.10), for each 𝑖 and 𝑗 , there exists
a constant matrix 𝑀𝑖, 𝑗 ∈ O(𝑁,R) such that[

𝜔𝑖,1, . . . , 𝜔𝑖,𝑁

]
=
[
𝜓 𝑗 ,1, · · · , 𝜓 𝑗 ,𝑁

]
· 𝑀𝑖, 𝑗 ·

√
ℓ′

√
ℓ
.(5.4)

By (3.9) and the definition of 𝜂𝑀 in Lemma 3.8.(iii), over Ω𝑥1 , the multivalued section 𝜂𝑀 of 𝐸 is
given by

⊔ℓ′

𝑗=1{±𝜔 𝑗 ,𝑖1 ∧ · · · ∧ 𝜔 𝑗 ,𝑖𝑀 }1≤𝑖1<· · ·<𝑖𝑀≤𝑁 .

On the other hand, by Lemma 3.8.(iii), (𝑢1, 𝑢2) induces another multivalued section of 𝐸 |𝐵𝑟 (𝑥0 ) ,
which is locally represented by

⊔ℓ
𝑗=1{±𝜓 𝑗 ,𝑖1 ∧ · · · ∧ 𝜓 𝑗 ,𝑖𝑀 }1≤𝑖1<· · ·<𝑖𝑀≤𝑁 .

For notational simplicity, for each 𝐼 = (𝑖1, . . . , 𝑖𝑀 ) ⊂ {1, . . . , 𝑁} with 1 ≤ 𝑖1 < · · · < 𝑖𝑀 ≤ 𝑁 , we
write

𝜔 𝑗 ,𝐼 := 𝜔 𝑗 ,𝑖1 ∧ · · · ∧ 𝜔 𝑗 ,𝑖𝑀 , ∀ 𝑗 ∈ {1, . . . , ℓ′},

and

𝜓 𝑗 ,𝐼 := 𝜓 𝑗 ,𝑖1 ∧ · · · ∧ 𝜓 𝑗 ,𝑖𝑀 , ∀ 𝑗 ∈ {1, . . . , ℓ}.

Therefore, by (5.4) there exists a constant matrix of 𝑀̃𝑖, 𝑗 ∈ O(
(𝑁
𝑀

)
,R) such that

[𝜔 𝑗 ,𝐼 ]1≤𝑖1<· · ·<𝑖𝑀≤𝑁 = [𝜓𝑖,𝐼 ]1≤𝑖1<· · ·<𝑖𝑀≤𝑁 · 𝑀̃𝑖, 𝑗 (
√
ℓ′

√
ℓ
)𝑀 .

Thus, we have the following equality, which holds over the entire R(𝑢) ∩ 𝐵𝑟 (𝑥0):

ℓ′∑︁
𝑗=1

∑︁
1≤𝑖1<· · ·<𝑖𝑀≤𝑁

|𝜔 𝑗 ,𝐼 |2ℎ𝐸 =
(ℓ′)𝑀+1

ℓ𝑀

∑︁
1≤𝑖1<· · ·<𝑖𝑀≤𝑁

|𝜓1,𝐼 |2ℎ𝐸 ,(5.5)

Note that there exists a constant 𝐶 > 1 such that

|𝜓𝑖,𝑁−𝑘+ 𝑗 (𝑥) | = | 1
√
ℓ
𝜕𝑢1

𝑗 | ≤ 𝐶, ∀ 𝑥 ∈ 𝐵𝑟 (𝑥0)(5.6)

for each 𝑖 ∈ {1, . . . , ℓ} and 𝑗 ∈ {1, . . . , 𝑘}.
We now consider the cases of 𝑥0 ∈ S̃(𝑢) and 𝑥0 ∈ R̃(𝑢) separately:

(a) If 𝑥0 ∈ S̃(𝑢), then 𝑀 > 𝑘 . By (5.3) and (5.6), for any 𝑥 ∈ Ω𝑥1 , we have

|𝜓1,𝐼 |2 ≤ 𝐶2𝑘 |∇𝑢2 |2𝜆(𝐼 ) ,(5.7)

where 𝜆(𝐼) denotes the cardinality of 𝐼 ∩ {1, . . . , 𝑁 − 𝑘}, that is a positive integer. Recall
that |∇𝑢2(𝑥0) |2 = 0. Since 𝐶 is a constant independent of 𝑥1 ∈ 𝐵𝑟 (𝑥0) ∩ R(𝑢), it then follows
from (5.5) and (5.7) that

lim
𝑥∈R(𝑢) ,𝑥→𝑥0

ℓ′∑︁
𝑗=1

∑︁
1≤𝑖1<· · ·<𝑖𝑀≤𝑁

|𝜔 𝑗 ,𝐼 |2(𝑥) = 0.

Since the multivalued section 𝜂𝑀 on 𝐸 is locally represented by ⊔ℓ′

𝑗=1{±𝜔 𝑗 ,𝐼 }1≤𝑖1<· · ·<𝑖𝑀≤𝑚,
it follows that that |𝑍𝜂𝑀 |𝑥0 ⊂ {0}. In other words, 𝑥0 ∉ 𝑋◦.

(b) If 𝑥0 ∈ R̃(𝑢), by (5.1), we have 𝑥0 ∈ 𝑋◦.
In conclusion, we have R̃ (𝑢) = 𝑋◦. The lemma is proved. □
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