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Abstract. In 1995, Kollár conjectured that a complex projective 𝑛-fold 𝑋 with generically
large fundamental group has Euler characteristic 𝜒(𝑋, 𝐾𝑋) ≥ 0. In this paper, we confirm
the conjecture assuming 𝑋 has linear fundamental group, i.e., there exists an almost faithful
representation 𝜋1 (𝑋) → GL𝑁 (C). We deduce the conjecture by proving a stronger 𝐿2 vanishing
theorem: for the universal cover 𝑋 of such 𝑋 , its 𝐿2-Dolbeaut cohomology 𝐻𝑛,𝑞

(2) (𝑋) = 0 for
𝑞 ≠ 0. The main ingredients of the proof are techniques from the linear Shafarevich conjecture
along with some analytic methods.
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1. Introduction

1.1. Main theorem. In the study of Shafarevich maps, Kollár made the following conjecture
([Kol95, Conjecture 18.12.1]).

Conjecture 1.1 (Kollár). Let 𝑋 be a smooth complex projective variety. If 𝑋 has generically
large fundamental group, then 𝜒(𝑋, 𝐾𝑋) ≥ 0.

Following the notations of [Kol95], we say that 𝑋 has generically large fundamental group
(resp. 𝜚 : 𝜋1(𝑋) → GL𝑁 (C) is a generically large representation) if for any irreducible
positive-dimensional subvariety 𝑍 of 𝑋 passing through a very general point, the image
Im[𝜋1(𝑍) → 𝜋1(𝑋)] (resp. 𝜌(Im[𝜋1(𝑍) → 𝜋1(𝑋)])) is infinite (see [Kol95, Definition 2.4]
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for the precise meaning of “very general”). Note that in [CDY22, DYK23, DY24], generically
large is called big.

In [GL87], Green and Lazarsfeld proved Kollár’s conjecture when 𝑋 has maximal Albanese
dimension. In this paper, we will use methods of 𝐿2-cohomology to study Conjecture 1.1.
For a compact Kähler manifold (𝑋, 𝜔), we denote by 𝜋𝑋 : 𝑋 → 𝑋 its universal cover, and for
any non-negative integer 𝑝 and 𝑞, let 𝐻𝑝,𝑞

(2) (𝑋) be the 𝐿2-Dolbeault cohomology group with
respect to the metric 𝜋∗

𝑋
𝜔. Note that its definition does not depend on the choice of 𝜔. Our

main theorem is the following:
Theorem A. Let 𝑋 be a smooth projective variety of dimension 𝑛. If there exists a generically
large representation 𝜋1(𝑋) → GL𝑁 (C), then the following statements hold.

(i) 𝐻
𝑝,0
(2) (𝑋) = 0 for 0 ≤ 𝑝 ≤ 𝑛 − 1 and 𝐻𝑛,𝑞

(2) (𝑋) = 0 for 1 ≤ 𝑞 ≤ 𝑛.
(ii) The Euler characteristic 𝜒(𝑋, 𝐾𝑋) ≥ 0.
(iii) If the strict inequality 𝜒(𝑋, 𝐾𝑋) > 0 holds, then

(a) there exists a nontrivial 𝐿2-holomorphic 𝑛-form on 𝑋;
(b) 𝑋 is of general type.

In particular, we prove Conjecture 1.1 assuming 𝜋1(𝑋) is linear, i.e. there exists an almost
faithful representation 𝜋1(𝑋) → GL𝑁 (C).

The most difficult aspect of proving Theorem A is showing that 𝐻𝑝,0
(2) (𝑋) = 0 for 0 ≤ 𝑝 ≤

𝑛 − 1. We outline the proof strategy at the beginning of Section 4. The remaining conclusions
of Theorem A can be derived from this 𝐿2-vanishing theorem, using Atiyah’s 𝐿2-index theorem
and Kollár’s theorem.

1.2. Some histories and comparison with previous works. In this subsection, (𝑋, 𝜔) is a
compact Kähler manifold of dimension 𝑛 and we denote by 𝜋𝑋 : 𝑋 → 𝑋 the universal cover.
In [Gro91], Gromov introduced the notion of Kähler hyperbolicity in his study of the Hopf
conjecture. Recall that 𝑋 is Kähler hyperbolic if there is a smooth 1-form 𝛽 such that 𝜋∗

𝑋
𝜔 = 𝑑𝛽

and the norm |𝛽 |𝜋∗
𝑋
𝜔 is bounded from above by a constant. He then proved the vanishing of

𝑘-th 𝐿2-Betti numbers of 𝑋 for 𝑘 ≠ 𝑛.
Gromov’s idea was later extended by Eyssidieux [Eys97], in which more general notions

of weakly Kähler hyperbolicity are introduced. Eyssidieux’s work was recently generalized
by Bei, Claudon, Diverio, Eyssidieux, and Trapani [BDET24, BCDT24], who studied a
birational analog of Kähler hyperbolicity. Also as generalizations of Gromov’s work, Cao-
Xavier [CX01] and Jost-Zuo [JZ00] introduced the notion of Kähler parabolicity. They
independently observed that the arguments of Gromov concerned with the vanishing of 𝐿2-
Betti numbers work also under the weaker assumption that 𝛽 is a smooth 1-form such that
|𝛽(𝑥) |𝜋∗

𝑋
𝜔 has sub-linear growth. In other words, there exists a constant 𝑐 > 0 such that

|𝛽(𝑥) |𝜋∗
𝑋
𝜔 ≤ 𝑐(1 + 𝑑

𝑋
(𝑥, 𝑥0)).

The formulation and proof of our partial 𝐿2-vanishing theorem in Theorem 2.4 are inspired
by the aforementioned works, and is introduced specifically for the proof of Theorem A. As a
result, it may appear technically involved.

In another aspect of the proof of Theorem A, we extensively use techniques from the study
of the reductive and linear Shafarevich conjectures in [DYK23, EKPR12]. Recall that the
Shafarevich conjecture predicts that a complex projective variety with a large fundamental
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group has its universal cover holomorphically convex. This conjecture was proved by Eyssi-
dieux, Katzarkov, Pantev and Ramachandran [Eys04, EKPR12] for smooth projective varieties
with linear fundamental groups, and was recently extended by Yamanoi and the first author in
[DYK23] to projective normal varieties with reductive fundamental groups.

1.3. Notation and Convention.
• All varieties in this paper are defined over C.
• Let (𝑋.𝜔) be a Kähler manifold. We denote by 𝜋𝑋 : 𝑋 → 𝑋 the universal cover of 𝑋 .
• Let (𝑋, 𝜔) be a compact Kähler manifold. Unless otherwise specified, 𝑑

𝑋
(𝑥, 𝑥0) stands

for the Riemannian distance between 𝑥 and the base point 𝑥0 in 𝑋 with respect to the
metric 𝜋∗

𝑋
𝜔.

• For a complex space 𝑍 , 𝑍norm denotes its normalization, and 𝑍 reg denotes its regular
locus.

• We use the standard abbreviations VHS and VMHS for variation of Hodge structures and
variation of mixed Hodge structures respectively.

• By convention, a closed positive (1, 1)-current 𝑇 on a complex manifold is semi-positive.
• Plurisubharmonic functions are abbreviated as psh functions.
• A positive closed (1, 1)-current𝑇 has continuous potential if locally we have𝑇 =

√
−1𝜕𝜕𝜓

with 𝜓 a continuous psh function.

1.4. Acknowledgment. We would like to express our gratitude to Patrick Brosnan, Junyan
Cao, Simone Diverio, Philippe Eyssidieux, Mihai Păun, Pierre Py, Christian Schnell, Xu Wang,
and Mingchen Xia for their inspiring discussions. We extend special thanks to Chikako Mese
for her invaluable discussion and expertise on harmonic maps into Euclidean buildings, and
to Yuan Liu and Xueyuan Wan for reading the first version of the paper and their very helpful
remarks. YD acknowledges the partial support of the French Agence Nationale de la Recherche
(ANR) under reference ANR-21-CE40-0010. BW thanks Peking University and BICMR for
the generous hospitality and support during the writing of this paper. He is partially supported
by a Simons fellowship.

2. A partial 𝐿2-vanishing theorem

A closed positive (1, 1)-current𝑇 on a complex manifold 𝑋 can be seen as a (1, 1)-form with
positive measure coefficients. Note that positive measures admit a Lebesgue decomposition
into an absolutely continuous part (with respect to the Lebesgue measure on 𝑋) and a singular
part. We therefore get a decomposition of 𝑇 itself into an absolutely continuous part 𝑇ac and a
singular part 𝑇sing. We begin with the following definition in [Bou02, §2.3].

Definition 2.1 (Lebesgue decomposition). The decomposition 𝑇 = 𝑇ac + 𝑇sing is called the
Lebesgue decomposition of 𝑇 .

Definition 2.2 (Semi-Kähler form). Let (𝑋, 𝜔𝑋) be a compact Kähler manifold. A smooth
closed real (1, 1)-form𝜔sk on 𝑋 is semi-Kähler if𝜔sk is semipositive everywhere and is strictly
positive on a Zariski dense open subset of 𝑋 .

Before proving a key 𝐿2-vanishing theorem, we first recall the definition of 𝐿2-cohomology
(cf. [BDIP02, Definition 12.3]).
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Definition 2.3 (𝐿2-cohomology). Let (𝑌, 𝜔) be a complete Kähler manifold. Let 𝐿𝑝,𝑞(2) (𝑌 ) be
the space of 𝐿2-integrable (𝑝, 𝑞)-forms with respect to the metric 𝜔. A section 𝑢 is said to be
in Dom 𝜕 if 𝜕𝑢 calculated in the sense of distributions is still in 𝐿2. Then the 𝐿2-Dolbeault
cohomology is defined as

𝐻
𝑝,𝑞

(2) (𝑌 ) = ker 𝜕
/

Im 𝜕 ∩ Dom 𝜕.

If (𝑋, 𝜔) is a compact Kähler manifold, then 𝐻𝑝,𝑞

(2) (𝑋) denotes the 𝐿2-cohomology with respect
to the metric 𝜋∗

𝑋
𝜔.

Let us state and prove our partial 𝐿2-vanishing theorem.

Theorem 2.4. Let (𝑋, 𝜔) be a compact Kähler 𝑛-fold. Let 𝑓 : 𝑋 → 𝑌 be a proper surjective
holomorphic map with connected fibers over a compact Kähler normal space 𝑌 of dimension
𝑚. Denote by 𝑓 : 𝑋 → 𝑌 the lift of 𝑓 to universal covers. Assume that there exists a 1-form 𝛽 on
𝑋 with 𝐿1

loc-coefficients, and a continuous quasi-psh function 𝜓 on 𝑋 satisfying the following
properties.

(1) The 1-form 𝛽 is smooth on an open subset of 𝑋 whose complement has zero Lebesgue
measure, and 𝜓 is smooth on a Zariski dense open subset of 𝑋 . Moreover, there is a
constant 𝐶 > 0 such that

|𝛽(𝑥) |𝜋∗
𝑋
𝜔 ≤a.e. 𝐶 (𝑑𝑋 (𝑥, 𝑥0) + 1) (1)

where 𝑥0 is a base point of 𝑋 .
(2) The sum 𝑑𝛽 + 𝜋∗

𝑋
𝑑𝑑c𝜓 is a closed positive (1, 1)-current, satisfying

𝜋∗𝑋 𝑓
∗𝜔𝑌 ≤a.e. (𝑑𝛽 + 𝜋∗𝑋𝑑𝑑c𝜓)ac ≤a.e. 𝜋

∗
𝑋𝜔 (2)

where 𝜔𝑌 is a semi-Kähler form on 𝑌 .
Then
(i) For any 𝑝 ∈ {0, . . . , 𝑚 − 1}, we have 𝐻𝑝,0

(2) (𝑋) = 0.

Assume that there exists a non-zero 𝛼 ∈ 𝐻𝑝,0
(2) (𝑋) for some 𝑝 < 𝑛. Let 𝑌◦ be the Zariski open

subset of 𝑌 reg, over which 𝑓 is a proper submersion and 𝜔𝑌 is Kähler.
(ii) we have

𝛼 |
𝑋◦ ∈ 𝐻0(𝑋◦, 𝑓 ∗Ω𝑚

𝑌◦ ⊗ Ω
𝑝−𝑚
𝑋◦ ), (3)

where 𝑌◦ := 𝜋−1
𝑌
(𝑌◦) and 𝑋◦ := 𝑓 −1(𝑌◦).

(iii) For any 𝑦 ∈ 𝑌◦, let 𝛼𝑦 be the holomorphic (𝑝 − 𝑚)-form on 𝑓 −1(𝑦) induced by 𝛼 under
the isomorphism

𝑓 ∗Ω𝑚

𝑌◦ ⊗ Ω
𝑝−𝑚
𝑋◦ | 𝑓 −1 (𝑦) ≃ Ω

𝑝−𝑚
𝑓 −1 (𝑦) .

Then 𝛼 | 𝑓 −1 (𝑦) is 𝑑-closed.

Proof. To lighten the notation, we write 𝜔 instead of 𝜋∗
𝑋
𝜔 abusively.
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Step 1. Since the sectional curvature of the complete Kähler manifold (𝑋, 𝜋∗
𝑋
𝜔) is uniformly

bounded, by a result of W. Shi (see e.g. [Hua19, Theorem 1.2]), there exists a constant 𝐶 > 0
and a smooth exhausting function 𝑟 on 𝑋 such that

𝑑
𝑋
(𝑥, 𝑥0) + 1 ≤ 𝑟 (𝑥) ≤ 𝑑

𝑋
(𝑥, 𝑥0) + 𝐶,

|𝑑𝑟 |𝜔 (𝑥) ≤ 𝐶 and |𝑑𝑑c𝑟 |𝜔 (𝑥) ≤ 𝐶 for all 𝑥 ∈ 𝑋 . Hence by (1), we have
|𝛽 |𝜔 (𝑥) ≤a.e. 𝐶𝑟 (𝑥).

Let 𝜚 : R→ R be a smooth function with 0 ≤ 𝜚 ≤ 1 such that

𝜚(𝑡) =
{

1, if 𝑡 ≤ 0;
0, if 𝑡 ≥ 1.

We consider the compactly supported function
𝑓 𝑗 (𝑥) = 𝜚(𝑟 (𝑥) − 𝑗 + 1), (4)

where 𝑗 is a positive integer. Then

Supp( 𝑓 𝑗 ) ⊂ {𝑥 ∈ 𝑋 | 𝑟 (𝑥) ≤ 𝑗},
𝑑𝑓 𝑗 (𝑥) = 𝜚′(𝑟 (𝑥) − 𝑗 + 1)𝑑𝑟,

and √
−1𝜕𝜕 𝑓 𝑗 = 𝜚′(𝑟 − 𝑗 + 1)

√
−1𝜕𝜕𝑟 +

√
−1𝜚′′(𝑟 − 𝑗 + 1)𝜕𝑟 ∧ 𝜕𝑟.

Then there exists some constant 𝑐1 > 0 such that
|𝑑𝑑c 𝑓 𝑗 (𝑥) |𝜔 ≤ 𝑐1 and |𝑑𝑓 𝑗 (𝑥) |𝜔 ≤ 𝑐1. (5)

for any 𝑥 ∈ 𝑋 .
Let 𝛼 be a holomorphic (𝑝, 0)-form which is 𝐿2 with respect to 𝜔 with 0 ≤ 𝑝 ≤ 𝑛−1. Then

𝑖𝑝
2
∫
𝑋

𝛼 ∧ �̄� ∧ 𝜔𝑛−𝑝 = (𝑛 − 𝑝)!
𝑛!

∫
𝑋

|𝛼 |𝜔𝜔𝑛 < ∞. (6)

Claim 2.5. The smooth (𝑝 + 𝑘, 𝑝 + 𝑘)-form 𝑖𝑝
2
𝛼 ∧ �̄� ∧ 𝜔𝑘 is closed and positive in the sense

of [Dem12, Chapter 3, Definition 1.1].

Proof of Claim 2.5. Since𝜔 and 𝛼 are both closed, it is obvious that 𝑖𝑝2
𝛼∧�̄�∧𝜔𝑘 is closed. By

[Dem12, Chapter 3, Example 1.2], 𝑖𝑝2
𝛼 ∧ �̄� is a positive (𝑝, 𝑝)-form. By [Dem12, Chapter 3,

Corollary 1.9],𝜔 is a strongly positive (1, 1)-form in the sense of [Dem12, Chapter 3, Definition
1.1] (it is different from the notion “strictly positive” (1, 1)-form!). We apply [Dem12, Chapter
3, Proposition 1.11] to conclude that 𝑖𝑝2

𝛼 ∧ �̄� ∧ 𝜔𝑘 is positive (𝑝 + 𝑘, 𝑝 + 𝑘)-forms for any
𝑘 = 1, . . . , 𝑛 − 𝑝. The claim is proved. □

We have

𝑖𝑝
2
∫
𝑋

(𝜋∗𝑋𝜓𝑑𝑑c 𝑓 𝑗 − 𝑑𝑓 𝑗 ∧ 𝛽) ∧ 𝛼 ∧ �̄� ∧ 𝜔𝑛−𝑝−1 = 𝑖𝑝
2
∫
𝑋

𝑓 𝑗 (𝑑𝛽 + 𝑑𝑑c𝜋∗𝑋𝜓) ∧ 𝛼 ∧ �̄� ∧ 𝜔𝑛−𝑝−1

= 𝑖𝑝
2
∫
𝑋

𝑓 𝑗𝛼 ∧ �̄� ∧ 𝜔𝑛−𝑝−1 ∧ 𝑇ac + 𝑖𝑝
2
∫
𝑋

𝑓 𝑗𝑇sing ∧ 𝛼 ∧ �̄� ∧ 𝜔𝑛−𝑝−1

(7)
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where 𝑇 = 𝑑𝛽 + 𝑑𝑑c𝜋∗
𝑋
𝜓, and 𝑇 = 𝑇ac + 𝑇sing is the Lebesgue decomposition as in Definition

2.1.
Claim 2.5 implies that

𝑖𝑝
2
∫
𝑋

𝑓 𝑗𝑇sing ∧ 𝛼 ∧ �̄� ∧ 𝜔𝑛−𝑝−1 ≥ 0 (8)

since 𝑇sing is a positive (1, 1)-current and 𝑓 𝑗 ≥ 0. By Item 2, 𝑇ac ≤a.e. 𝜔. Since 0 ≤ 𝑓 𝑗 ≤ 1
and lim 𝑗→∞ 𝑓 𝑗 (𝑥) = 1 for any 𝑥 ∈ 𝑋 , by Claim 2.5 and Lebesgue’s dominated convergence
theorem, we have

0 ≤ lim
𝑗→∞

𝑖𝑝
2
∫
𝑋

𝑓 𝑗𝛼 ∧ �̄� ∧ 𝜔𝑛−𝑝−1 ∧ 𝑇ac =

𝑖𝑝
2
∫
𝑋

𝛼 ∧ �̄� ∧ 𝜔𝑛−𝑝−1 ∧ 𝑇ac ≤ 𝑖𝑝2
∫
𝑋

𝛼 ∧ �̄� ∧ 𝜔𝑛−𝑝
(6)
< +∞. (9)

Denote by
𝐵 𝑗 := {𝑥 ∈ 𝑋 | 𝑗 − 1 ≤ 𝑟 (𝑥) ≤ 𝑗}.

In what follows, for any smooth form 𝛾 on 𝑋 , we denote by |𝛾 | its norm with respect to the
metric 𝜔. Denote dvol := 𝜔𝑛

𝑛! . Since 𝜓 is continuous, we have sup𝑋 |𝜓 | ≤ 𝑐2 for some constant
𝑐2 > 0. Then by supp(𝑑𝑑c 𝑓 𝑗 ) ⊂ 𝐵 𝑗 , we have����∫

𝑋

𝜋∗𝑋𝜓𝑑𝑑
c 𝑓 𝑗 ∧ 𝛼 ∧ �̄� ∧ 𝜔𝑛−𝑝−1

���� ≤ ∫
𝐵 𝑗

��𝜋∗𝑋𝜓𝑑𝑑c 𝑓 𝑗 ∧ 𝛼 ∧ �̄� ∧ 𝜔𝑛−𝑝−1�� dvol

≤ 𝑐2

∫
𝐵 𝑗

|𝑑𝑑c 𝑓 𝑗 | |𝛼 |2 |𝜔𝑛−𝑝−1 | dvol

(5)
≤ 𝑐1𝑐2

∫
𝐵 𝑗

|𝛼 |2 dvol . (10)

Note that |𝛽(𝑥) | ≤a.e. 𝐶𝑟 (𝑥) for some constant 𝐶 > 0. Hence by supp(𝑑𝑓 𝑗 ) ⊂ 𝐵 𝑗 , one has����∫
𝑋

𝑑𝑓 𝑗 ∧ 𝛽 ∧ 𝛼 ∧ �̄� ∧ 𝜔𝑛−𝑝−1
���� ≤ ∫

𝐵 𝑗

��𝑑𝑓 𝑗 ∧ 𝛽 ∧ 𝛼 ∧ �̄� ∧ 𝜔𝑛−𝑝−1�� dvol

≤
∫
𝐵 𝑗

|𝑑𝑓 𝑗 | |𝛽 | |𝛼 |2 |𝜔𝑛−𝑝−1 | dvol

(5)
≤ 𝑐1𝐶 𝑗

∫
𝐵 𝑗

|𝛼 |2 dvol (11)

Claim 2.6. There exists a subsequence { 𝑗𝑖}𝑖≥1 such that

lim
𝑖→∞

𝑗𝑖

∫
𝐵 𝑗𝑖

|𝛼(𝑥) |2 dvol = 0. (12)

Proof. If not, then there exists a positive constant 𝑐′ and a positive integer 𝑛0 such that

𝑗

∫
𝐵 𝑗

|𝛼(𝑥) |2 dvol ≥ 𝑐′ > 0
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for any 𝑗 ≥ 𝑛0. This yields ∫
𝑋

|𝛼(𝑥) |2 dvol ≥
∞∑︁
𝑗=𝑛0

∫
𝐵 𝑗

|𝛼(𝑥) |2 dvol

≥ 𝑐′
+∞∑︁
𝑗=𝑛0

1
𝑗
= +∞,

which leads to a contradiction that 𝛼 is an 𝐿2-form with respect to 𝜔. □

Claim 2.6 implies that there exists a subsequence { 𝑗𝑖}𝑖≥1 for which (12) holds. (7), (10),
(11) and (12) imply that

lim
𝑘→∞

𝑖𝑝
2
∫
𝑋

𝑓 𝑗𝑘𝛼 ∧ �̄� ∧ 𝜔𝑛−𝑝−1 ∧ 𝑇ac + 𝑖𝑝
2
∫
𝑋

𝑓 𝑗𝑘𝑇sing ∧ 𝛼 ∧ �̄� ∧ 𝜔𝑛−𝑝−1 = 0.

Together with (8), (9), we obtain that

𝑖𝑝
2
∫
𝑋

𝛼 ∧ �̄� ∧ 𝜔𝑛−𝑝−1 ∧ 𝑇ac = 0.

Since 𝑇ac ≥ 𝜋∗
𝑋
𝑓 ∗𝜔𝑌 , this equality along with Claim 2.5 imply that

𝑖𝑝
2
∫
𝑋

𝛼 ∧ �̄� ∧ 𝜔𝑛−𝑝−1 ∧ 𝜋∗𝑋 𝑓 ∗𝜔𝑌 = 0.

By Claim 2.5 again, 𝑖𝑝2
𝛼 ∧ �̄� ∧ 𝜋∗

𝑋
𝑓 ∗𝜔𝑌 is a positive (𝑝 + 1, 𝑝 + 1)-form. The above equality

implies that

𝑖𝑝
2
𝛼 ∧ �̄� ∧ 𝜋∗𝑋 𝑓 ∗𝜔𝑌 ≡ 0. (13)

Step 2. We abusively denote 𝜔𝑌 for 𝜋∗
𝑌
𝜔𝑌 . Let 𝑦 be any point in 𝑌◦ and let 𝑥 ∈ 𝑋 be any

point in 𝑓 −1(𝑦). One can then find coordinate open subsets (𝑈; 𝑧1, . . . , 𝑧𝑛+𝑚) centered at 𝑥
and (𝑉 ;𝑤1, . . . , 𝑤𝑚) centered at 𝑦, such that 𝑓 (𝑧1, . . . , 𝑧𝑛+𝑚) = (𝑧1, . . . , 𝑧𝑚). Furthermore,
we assume that (𝑉 ;𝑤1, . . . , 𝑤𝑚) is orthonormal at 𝑦 with respect to 𝜔𝑌 . Then 𝜔𝑌 (𝑦) =√
−1

∑𝑚
𝑗=1 𝑑𝑤 𝑗 ∧ 𝑑�̄� 𝑗 .

For any subset 𝐼 ⊂ {1, . . . , 𝑛 + 𝑚}, we denote 𝜔𝐼 := ∧𝑖∈𝐼
√
−1𝑑𝑧𝑖 ∧ 𝑑𝑧𝑖. Let 𝛼 ∈ 𝐻𝑝,0

(2) (𝑋). If
we express 𝛼 |𝑈 =

∑
|𝐼 |=𝑝 𝛼𝐼𝑑𝑧𝐼 , where 𝑑𝑧𝐼 := 𝑑𝑧𝑖1 ∧· · ·∧𝑑𝑧𝑖𝑝 with 𝐼 consisting of 𝑖1 < . . . < 𝑖𝑝,

then we have

𝑖𝑝
2
𝛼 ∧ �̄� ∧ 𝑓 ∗𝜔𝑌 (𝑥) =

∑︁
𝑗∈{1,...,𝑚}\𝐼

|{1, . . . , 𝑚}\𝐼 | · |𝛼𝐼 |2(𝑥)𝜔𝐼∪ 𝑗 .

Here |{1, . . . , 𝑚}\𝐼 | represents the cardinality of the set {1, . . . , 𝑚}\𝐼. By (13), we have
{1, . . . , 𝑚} ⊂ 𝐼 for each 𝐼 satisfying 𝛼𝐼 (𝑥) ≠ 0. Since 𝑥 is an arbitrary point in the Zariski
dense open subset 𝑋◦ of 𝑋 , this establishes Theorem 2.4.(i). If 𝑛 > 𝑚 and 𝑝 ≥ 𝑚, this also
establishes (3). Hence Theorem 2.4.(ii) is proved.
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Step 3. Let us prove Theorem 2.4.(iii). For any 𝑦 ∈ 𝑌◦, we denote 𝐹𝑦 := 𝑓 −1(𝑦). Each non-
trivial 𝑚-form 𝜂 in Ω𝑚

𝑌◦,𝑦
, induces a unique holomorphic (𝑝 −𝑚)-form 𝛼𝑦 ∈ 𝐻0(𝐹𝑦,Ω𝑝−𝑚

𝐹𝑦
) on

𝐹𝑦 via the isomorphism of locally free sheaves on 𝐹𝑦 as follows

𝑓 ∗Ω𝑚

𝑌◦ ⊗ Ω
𝑝−𝑚
𝑋◦ | 𝑓 −1 (𝑦)

⊗ 𝑓 ∗𝜂∨
→ Ω

𝑝−𝑚
𝑋◦ | 𝑓 −1 (𝑦) → Ω

𝑝−𝑚
𝑓 −1 (𝑦) .

Such 𝛼𝑦 can be written explicitly. We use the coordinate systems (𝑈; 𝑧1, . . . , 𝑧𝑛+𝑚) and
(𝑉 ;𝑤1, . . . , 𝑤𝑚) introduced in Step 2. The canonical form 𝑑𝑤1 ∧ · · · ∧ 𝑑𝑤𝑚 in𝑉 is a nowhere-
vanishing. For any set 𝐼 ⊃ {1, . . . , 𝑚}, denote by 𝐼 := 𝐼\{1, . . . , 𝑚}. By Theorem 2.4.(ii), we
have

𝛼 |𝑈 =
∑︁

|𝐼 |=𝑝,𝐼⊃{1,...,𝑚}
𝛼𝐼𝑑𝑧𝐼 ∧ 𝑑𝑧1 ∧ · · · ∧ 𝑑𝑧𝑚 . (14)

Then the holomorphic (𝑝 − 𝑚)-form 𝛼𝑦 on 𝐹𝑦 ∩𝑈 induced by 𝑑𝑤1 ∧ · · · ∧ 𝑑𝑤𝑚 is defined by

𝛼𝑦 :=
∑︁

|𝐼 |=𝑝,𝐼⊃{1,...,𝑚}
𝛼𝐼 |𝐹𝑦𝑑𝑧𝐼 . (15)

It can be verified that the above definition depends only on the 𝑚-form 𝑑𝑤1 ∧ · · · ∧ 𝑑𝑤𝑚 (𝑦).
Therefore, if we choose different coordinate open subsets covering 𝐹𝑦, they glue together into
a well-defined holomorphic (𝑝 − 𝑚)-form 𝛼𝑦 on 𝐹𝑦.

Equation (14) implies that

0 = 𝑑𝛼 =
∑︁
|𝐼 |=𝑝

𝑛∑︁
𝑗=𝑚+1

𝜕𝛼𝐼

𝜕𝑧 𝑗
𝑑𝑧 𝑗 ∧ 𝑑𝑧𝐼 ∧ 𝑑𝑧1 ∧ · · · ∧ 𝑑𝑧𝑚 . (16)

This yields

𝑑𝛼𝑦 =
∑︁

|𝐼 |=𝑝,𝐼⊃{1,...,𝑚}

𝑛∑︁
𝑗=𝑚+1

𝜕𝛼𝐼

𝜕𝑧 𝑗
|𝐹𝑦𝑑𝑧 𝑗 ∧ 𝑑𝑧𝐼 = 0.

Theorem 2.4.(iii) is proved. We complete the proof of the theorem. □

We will need the following consequence of Theorem 2.4 in the proof of Theorem A.

Corollary 2.7. Let (𝑋, 𝜔) be a compact Kähler 𝑛-fold, and let 𝑓 : 𝑋 → 𝐴 be a holomorphic
map to an abelian variety 𝐴 such that dim 𝑓 (𝑋) = 𝑛. Let 𝑋1 be a connected component of
𝑋 ×𝐴 𝐴, where 𝐴→ 𝐴 is the universal cover of 𝐴. Then for any infinite Galois cover �̃�′ → 𝑋

dominating 𝑋1, we have 𝐻𝑝,0
(2) (𝑋

′) = 0 for any 𝑝 ∈ {0, . . . , 𝑛 − 1}.

Proof. Denote by 𝜋′ : �̃�′ → 𝑋 the covering map. We take global linear coordinates
(𝑧1, . . . , 𝑧𝑚) for 𝐴 such that

√
−1

∑𝑚
𝑖=1 𝑑𝑧𝑖 ∧ 𝑑𝑧𝑖 descends to a Kähler form 𝜔𝐴 on 𝐴. Since �̃�′

dominates 𝑋1, there is a holomorphic map 𝑔 : �̃�′ → 𝐴 that lifts 𝑓 : 𝑋 → 𝐴. Let 𝑔𝑖 := 𝑧𝑖 ◦ 𝑔.
Consider smooth 1-form

𝛽 := 𝑔∗
√
−1𝜕 (

𝑚∑︁
𝑖=1

|𝑧𝑖 |2) =
√
−1

𝑛∑︁
𝑖=1

𝑔𝑖 (𝑥)𝜕𝑔𝑖 (𝑥).
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Note that 𝜕𝑔𝑖 (𝑥) descends to a holomorphic 1-form on 𝑋 . Thus, there is a constant 𝐶 > 0 such
that |𝜕𝑔𝑖 (𝑥) |𝜋′∗𝜔 ≤ 𝐶 for any 𝑥 ∈ �̃�′ and any 𝑖 = 1, . . . , 𝑛. Therefore, 𝑔 is Lipschitz. Fix a base
point 𝑥0 ∈ �̃�′. Then there is a constant 𝐶′ > 0 such that

|𝑔𝑖 (𝑥) | ≤ 𝐶′ (𝑑
�̃� ′ (𝑥, 𝑥0) + 1

)
for any 𝑥 ∈ 𝑋 . This implies that

|𝛽(𝑥) |𝜋′∗𝜔 ≤ 𝑛𝐶𝐶′ (𝑑
�̃� ′ (𝑥, 𝑥0) + 1

)
.

Note that 𝑑𝛽 = 𝜋′∗ 𝑓 ∗𝜔𝐴, which is a semi-Kähler form on 𝑋 . By Theorem 2.4.(i), we conclude
the desired 𝐿2-vanishing theorem. □

3. Constructing 1-forms via harmonic maps to Euclidean buildings

Let 𝐾 be a non-archimedean local field of characteristic zero and let 𝐺 be a reductive
algebraic group defined over 𝐾 . There exists a Euclidean building associated with 𝐺, which is
called the Bruhat-Tits building and denoted by Δ(𝐺). We refer the readers to [KP23, Rou23]
for the definition and properties of Bruhat-Tits buildings.

Let (𝑉,𝑊,Φ) be the root system associated with Δ(𝐺). It means that 𝑉 is a real Euclidean
space endowed with a Euclidean metric and𝑊 is an affine Weyl group acting on𝑉 . Namely,𝑊
is a semidirect product 𝑇 ⋊𝑊𝑣, where𝑊𝑣 is the vectorial Weyl group, which is a finite group
generated by reflections on 𝑉 , and 𝑇 is a translation group of 𝑉 . Here Φ is the root system of
𝑉 . It is a finite set of 𝑉∗\{0} such that𝑊𝑣 acts on Φ as a permutation. Moreover, Φ generates
𝑉∗. From the reflection hyperplanes of𝑊 we obtain a decomposition of 𝑉 into facets. Let H
be set of hyperplanes of 𝑉 defined by 𝑤 ∈ 𝑊 . The maximal facets, called chambers, are the
open connected components of 𝑉\∪𝐻∈H .

For any apartment 𝐴 in Δ(𝐺), there exists an isomorphism 𝑖𝐴 : 𝐴 → 𝑉 , which is called a
chart. For two charts 𝑖𝐴1 : 𝐴1 → 𝑉 and 𝑖𝐴2 : 𝐴2 → 𝑉 , if 𝐴1 ∩ 𝐴2 ≠ ∅, it satisfies the following
properties:
(a) 𝑌 := 𝑖𝐴2 (𝑖−1

𝐴1
(𝑉)) is convex.

(b) There is an element 𝑤 ∈ 𝑊 such that 𝑤 ◦ 𝑖𝐴1 |𝐴1∩𝐴2 = 𝑖𝐴2 |𝐴1∩𝐴2 .
The charts allow us to map facets intoΔ(𝐺) and their images are also called facets. The axioms
guarantee that these notions are chart independent.

Let 𝑋 be a compact Kähler manifold and let 𝜚 : 𝜋1(𝑋) → 𝐺 (𝐾) be a Zariski dense
representation. By the work of Gromov-Schoen [GS92] (see also [BDDM22] for the quasi-
projective case), there exists a 𝜚-equivariant harmonic mapping 𝑢 : 𝑋 → Δ(𝐺) where Δ(𝐺) is
the (enlarged) Bruhat-Tits building of𝐺 (see [KP23, Definition 4.3.2] for the definition). Such
𝑢 is moreover pluriharmonic. We denote by 𝑅(𝑢) the regular set of harmonic map 𝑢. That is,
for any 𝑥 ∈ 𝑅(𝑢), there exists an open subset Ω𝑥 containing 𝑥 such that 𝑢(Ω𝑥) ⊂ 𝐴 for some
apartment 𝐴. Since 𝐺 (𝐾) acts transitively on the apartments of Δ(𝐺), we know that 𝑅(𝑢) is
the pullback of an open subset 𝑋′ of 𝑋 . By [GS92], 𝑋\𝑋′ has Hausdorff codimension at least
two.

We fix an orthogonal coordinates (𝑥1, . . . , 𝑥𝑁 ) for 𝑉 . Define smooth real functions on Ω𝑥

by setting

𝑢𝐴,𝑖 := 𝑥𝑖 ◦ 𝑖𝐴 ◦ 𝑢. (17)
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The pluriharmonicity of 𝑢 implies that
√
−1𝜕𝜕𝑢𝐴,𝑖 = 0. We consider a smooth real semi-

positive (1, 1)-form on Ω𝑥 defined by

√
−1

𝑁∑︁
𝑖=1

𝜕𝑢𝐴,𝑖 ◦ 𝜕𝑢𝐴,𝑖 .

By [Eys04, §3.3.2], such real (1, 1)-form does not depend on the choice of 𝐴, and is invariant
under 𝜋1(𝑋)-action. Therefore, it descends to a smooth real closed semi-positive (1, 1)-form
on 𝑋′. It is shown in [Eys04] that it extends to a positive closed (1, 1)-current 𝑇𝜚 on 𝑋 with
continuous potential.

Definition 3.1 (Canonical current). The above closed positive (1, 1)-current 𝑇𝜚 on 𝑋 is called
the canonical current of 𝜚.

By [Eys04, CDY22, DYK23], one has a proper fibration 𝑠 : 𝑋 → 𝑆𝜚 associated with 𝜚,
which is called Katzarkov-Eyssidieux reduction map. It has the following properties.

Proposition 3.2 ([Eys04, CDY22]). Let 𝑋 be a smooth projective variety and let 𝜌 : 𝜋1(𝑋) →
𝐺 (𝐾) be a Zariski dense representation where 𝐺 is a reductive group over a non-archimedean
local field 𝐾 . Then there exists a proper morphism 𝑠𝜌 : 𝑋 → 𝑆𝜌 (so-called Katzarkov-
Eyssidieux reduction map) onto a normal projective variety with connected fibers such that for
any irreducible closed subvariety 𝑍 ⊂ 𝑋 , the following properties are equivalent:
(1) 𝜌(Im[𝜋1(𝑍norm) → 𝜋1(𝑋)]) is bounded;
(2) 𝜌(Im[𝜋1(𝑍) → 𝜋1(𝑋)]) is bounded;
(3) 𝑠𝜌 (𝑍) is a point.
Moreover, there exists a (1, 1)-current 𝑇 ′

𝜚 with continuous potential on 𝑆𝜚 such that 𝑠∗𝜚𝑇 ′
𝜚 =

𝑇𝜚. □

Proposition 3.3. Let 𝑥0 be a fixed base point in 𝑋 . For the canonical current 𝑇𝜚 defined in
Definition 3.1, we have

√
−1𝜕𝜕𝑑2

Δ(𝐺) (𝑢(𝑥), 𝑢(𝑥0)) ≥ 𝜋∗𝑋𝑇𝜚, (18)

where 𝑑Δ(𝐺) (•, •) is the distance function on Δ(𝐺). Moreover, the above equality holds over
a dense open subset 𝑋◦ such that 𝑋\𝑋◦ has zero Lebesgue measure.

Proof. We assume that 𝑥0 ∈ 𝑅(𝑢). Let 𝜔 be a Kähler metric on 𝑋 . For any 𝑥 ∈ 𝑅(𝑢) where
𝑅(𝑢) is the regular set of the harmonic map 𝑢, there exists an open subset Ω𝑥 containing 𝑥 such
that 𝑢(Ω𝑥) ⊂ 𝐴 for some apartment 𝐴.

Note that 𝑑Δ(𝐺) is 𝐺 (𝐾)-invariant. Let 𝜄 : 𝐶 → Ω𝑥 be any holomorphic curve. Then by
[GS92, Proposition 2.2 in p. 191], we have

Δ𝑑2(𝑢 ◦ 𝜄(𝑥), 𝑢(𝑥0)) ≥ |∇𝑢 ◦ 𝜄|2,

where the |∇𝑢 ◦ 𝜄|2 is the norm defined with respect to 𝑑Δ(𝐺) and 𝜔. It follows that

|∇𝑢 ◦ 𝜄|2𝜄∗𝜔 = 𝜄∗(
√
−1

𝑁∑︁
𝑖=1

𝜕𝑢𝐴,𝑖 ∧ 𝜕𝑢𝐴,𝑖)
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where 𝑢𝐴,𝑖 is defined in (17). Therefore, over Ω𝑥 we have

√
−1𝜕𝜕𝑑2

Δ(𝐺) (𝑢(𝑥), 𝑢(𝑥0)) ≥
√
−1

𝑚∑︁
𝑖=1

𝜕𝑢𝐴,𝑖 ∧ 𝜕𝑢𝐴,𝑖 .

By Definition 3.1, we have (18) over the whole 𝑅(𝑢).

Claim 3.4. (18) holds over the whole 𝑋 .

Proof. Since 𝑢 is Lipschitz, it follows that 𝑑2
Δ(𝐺) (𝑢(𝑥), 𝑢(𝑥0)) is a continuous function on 𝑋 .

Recall that 𝑇𝜚 is a positive closed (1, 1)-current with continuous potential. This implies that
for any point 𝑥 ∈ 𝑋 , there exist a neighborhood Ω𝑥 and a continuous function 𝜙 on Ω𝑥 such
that √

−1𝜕𝜕𝑑2
Δ(𝐺) (𝑢(𝑥), 𝑢(𝑥0)) − 𝜋∗𝑋𝑇𝜚 =

√
−1𝜕𝜕𝜙

on Ω𝑥 . Note that
√
−1𝜕𝜕𝜙 ≥ 0 over Ω𝑥 ∩ 𝑅(𝑢). Since the complement of Ω𝑥 ∩ 𝑅(𝑢) has

Hausdorff codimension at least two in Ω𝑥 , we apply the extension theorem in [Shi72, Theorem
3.1(i)] to conclude that there is a psh function 𝜙′ on Ω𝑥 such that 𝜙′|Ω𝑥∩𝑅(𝑢) = 𝜙|Ω𝑥∩𝑅(𝑢) . Since
𝜙 is continuous, and 𝜙′ is upper semi-continuous, it follows that 𝜙 = 𝜙′ on Ω𝑥 . This shows that
(18) holds over Ω𝑥 , hence over the whole 𝑋 . The claim is proved. □

Let 𝑋◦ be the set of points 𝑥 in 𝑋 such that there exists an open neighborhood Ω𝑥 containing
𝑥 such that 𝑢(Ω𝑥) is contained in the closure of a chamber C of the buildingΔ(𝐺). By [DM24],
𝑋◦ is a dense open subset such that 𝑋\𝑋◦ has zero Lebesgue measure. Note that there exists
an apartment 𝐴 containing both C and 𝑥0. It follows that for any 𝑦 ∈ Ω𝑥 , we have

𝑑2
Δ(𝐺) (𝑢(𝑦), 𝑢(𝑥0)) =

𝑁∑︁
𝑖=1

|𝑢𝐴,𝑖 (𝑦) − 𝑢𝐴,𝑖 (𝑥0) |2. (19)

Therefore,
√
−1𝜕𝜕𝑑2

Δ(𝐺) (𝑢(𝑦), 𝑢(𝑥0)) =
√
−1

𝑚∑︁
𝑖=1

𝜕𝑢𝐴,𝑖 (𝑦) ∧ 𝜕𝑢𝐴,𝑖 (𝑦)

by the pluriharmonicity of 𝑢𝐴,𝑖. This proves that over 𝑋◦, we have
√
−1𝜕𝜕𝑑2

Δ(𝐺) (𝑢(𝑥), 𝑢(𝑥0)) = 𝜋∗𝑋𝑇𝜚 (𝑥).

The proposition is proved. □

Remark 3.5. Note that we cannot expect the equality (18) holds over 𝑅(𝑢). Here is an example.
Consider a tree 𝑇 ⊂ R2 defined by 𝑇 = R × {0} ∪ 0 × R≥0 and thus (0, 0) is the vertice of 𝑇 .
Consider a pluriharmonic map 𝑢 : D→ 𝑇 defined by 𝑧 ↦→ (Re(𝑧), 0). Let 𝑃 := (0, 1) be a base
point in 𝑇 . Then 𝑑2(𝑢(𝑧), 𝑃) = ( |Re(𝑧) | + 1)2, where 𝑑 (•, •) denotes the distance function on
the tree 𝑇 . In this case, we note that

√
−1𝜕𝜕𝑑2(𝑢(𝑧), 𝑃) does not has absolutely continuous

coefficients on D: on the line D ∩ (Re(𝑧) = 0), the coefficients of
√
−1𝜕𝜕𝑑2(𝑢(𝑧), 𝑃) have

non-trivial singular part for its Lebesgue decomposition. However, the regular locus 𝑅(𝑢) is
the whole disk D.
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Let us denote by

𝛽𝜚 (𝑥) := 𝑖𝜕𝑑2
Δ(𝐺) (𝑢(𝑥), 𝑢(𝑥0)). (20)

Since 𝑑2
Δ(𝐺) (𝑢(𝑥), 𝑢(𝑥0)) is a psh function on 𝑋 by Proposition 3.3, by [GZ17, Theorem 1.46],

𝛽𝜚 has 𝐿1
loc-coefficients.

Lemma 3.6. There exists a dense open subset 𝑋◦ of 𝑋 whose complement has zero Lebesgue
measure such that 𝛽𝜚 is smooth. Moreover, there exists a number 𝑐 > 0 such that for any
𝑥 ∈ 𝑋◦, we have

|𝛽𝜚 (𝑥) |𝜋∗
𝑋
𝜔 ≤ 𝑐(1 + 𝑑

𝑋
(𝑥, 𝑥0)).

Here 𝜔 is a Kähler metric on 𝑋 .

Proof. Let 𝑋◦ be the open subset defined in the proof of Proposition 3.3. Then 𝑋\𝑋◦ has zero
Lebesgue measure. For any 𝑥 ∈ 𝑋◦, it has an open neighborhood Ω𝑥 and an apartment 𝐴 such
that 𝑢(Ω𝑥) ⊂ 𝐴 and 𝑢(𝑥0) ∈ 𝐴. Then by (19) and (20), one has

𝛽𝜚 (𝑦) =
√
−1

𝑁∑︁
𝑖=1

(𝑢𝐴,𝑖 (𝑦) − 𝑢𝐴,𝑖 (𝑥0))𝜕𝑢𝐴,𝑖 (𝑦).

Since 𝑢 is Lipschitz and 𝜚-equivariant, it follows that there exists a uniform constant 𝑐1 > 0
such that for any 𝑦 ∈ 𝑋 , we have

𝑑Δ(𝐺) (𝑢(𝑦), 𝑢(𝑥0)) ≤ 𝑐1(1 + 𝑑
𝑋
(𝑦, 𝑥0)).

Note that for any 𝑦 ∈ Ω𝑥 , we have
|𝑢𝐴,𝑖 (𝑦) − 𝑢𝐴,𝑖 (𝑥0) | ≤ 𝑑Δ(𝐺) (𝑢(𝑦), 𝑢(𝑥0)).

On the other hand, by the Lipschitz condition of 𝑢, there exists another uniform constant 𝑐2 > 0
such that for any 𝑦 ∈ Ω𝑥 , we have

𝑁∑︁
𝑖=1

|𝜕𝑢𝐴,𝑖 (𝑦) |𝜋∗𝜔 ≤ 𝑐2.

In conclusion, we have
|𝛽𝜚 (𝑦) |𝜋∗

𝑋
𝜔 ≤ 𝑐1𝑐2(1 + 𝑑

𝑋
(𝑦, 𝑥0)) for any 𝑦 ∈ Ω𝑥 .

Since 𝑥 is any point in 𝑋◦, the above inequality holds for any 𝑥 ∈ 𝑋◦. The lemma is proved. □

4. 𝐿2-vanishing theorem and generically large local systems

In this section we will prove Theorem A. In Section 4.1, we address the case where 𝜚

is semisimple, utilizing techniques from the proof of the reductive Shafarevich conjecture in
[DYK23]. The desired 1-form 𝛽, as required in Theorem 2.4, arises from 1-forms 𝛽𝜏 associated
with 𝜏 : 𝜋1(𝑋) → GL𝑁 (𝐾) defined in (20), where 𝐾 is a non-archimedean local field. We
then reduce the proof to Theorem 2.4.(i).

For the proof of the general cases of Theorem A, we will apply techniques from the proof of
the linear Shafarevich conjecture in [EKPR12]. Using similar techniques as in the semi-simple
case, we first construct a suitable fibration 𝑓 : 𝑋 → 𝑌 (the reductive Shafarevich morphism
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sh0
𝑀 : 𝑋 → Sh0

𝑀 (𝑋)) such that the conditions in Theorem 2.4 are fulfilled. Moreover, by the
structure of the linear Shafarevich morphism, for almost every smooth fiber of 𝑓 , the conditions
in Corollary 2.7 are satisfied.

Therefore, if there exists a non-trivial 𝛼 ∈ 𝐻𝑝,0
(2) (𝑋) for some 𝑝 ∈ {0, . . . , dim 𝑋 − 1}, we

can apply Theorem 2.4.(i) to show that 𝑝 ≥ 𝑚 := dim𝑌 , and use Theorem 2.4.(iii) to obtain a
non-trivial 𝐿2 holomorphic (𝑝 − 𝑚)-form on the universal cover of almost every smooth fiber
of 𝑓 . Finally, we apply Corollary 2.7 to obtain a contradiction.

Section 4.1 is covered by Section 4.2, and readers can skip it if they prefer to proceed directly
to the proof of the general case of Theorem A.

4.1. Case of semi-simple local systems.
Theorem 4.1. Let 𝑋 be a smooth projective variety. Let 𝜚 : 𝜋1(𝑋) → GL𝑁 (C) be a semisimple
representation. If 𝜚 is generically large, then 𝐻𝑝,0

(2) (𝑋) = 0 for 0 ≤ 𝑝 ≤ 𝑛 − 1.

We will use techniques in proving the reductive Shafarevich conjecture in [DYK23, Eys04].
We summarize the main results needed in proving Theorem 4.1 as follows.
Theorem 4.2 ([DYK23, Proof of Theorem 4.31]). Let 𝑋 be a smooth projective variety. Let
𝜚 : 𝜋1(𝑋) → GL𝑁 (C) be a semisimple representation. If 𝜚 is generically large, then after
replacing 𝑋 by a finite étale cover, there exist
(1) a family of Zariski dense representations {𝜏𝑖 : 𝜋1(𝑋) → 𝐺𝑖 (𝐾𝑖)}𝑖=1,...,ℓ where each 𝐺𝑖 is

a reductive group over a non-archimedean local field 𝐾𝑖 of characteristic zero,
(2) a C-VHS L on 𝑋 ,
such that there exists a birational morphism 𝜇 : 𝑋 → 𝑌 onto a normal projective variety 𝑌
such that

{𝑇𝜏1 + · · · + 𝑇𝜏ℓ +
√
−1tr(𝜃 ∧ 𝜃∗)} = {𝜇∗𝜔𝑌 } ∈ 𝐻1,1(𝑋,R),

where 𝜔𝑌 is a Kähler form on 𝑌 . Here
• 𝑇𝜏𝑖 is the canonical current on 𝑋 associated with 𝜏𝑖 defined in Definition 3.1.
• 𝜃 is the Higgs field of the Hodge bundle relative to L and 𝜃∗ is the adjoint of 𝜃 with respect

to the Hodge metric. □

Note that in (20), we construct certain 1-forms 𝛽𝜏𝑖 associated with the non-archimedean
representations 𝜏𝑖 in Theorem 4.2. For the C-VHS L, there is also another way to construct
similar 1-forms. This was established by Eyssidieux in [Eys97] and we recollect some facts
therein.
Proposition 4.3 ([Eys97, Proposition 4.5.1]). Let 𝑋 be a smooth projective variety and let L
be a C-VHS on 𝑋 . Let 𝒟 be the period domain of L and let 𝑓 : 𝑋 → 𝒟 be the period map.
Let 𝑞 : 𝒟 → ℛ be the natural quotient where ℛ is the corresponding Riemannian symmetric
space of 𝒟. Define 𝜔L :=

√
−1tr(𝜃 ∧ 𝜃∗) as in Theorem 4.2, which is a smooth closed positive

(1, 1)-form. Then there exists a smooth function 𝜓𝒟 : ℛ → R>0 and constants 𝐶, 𝑐 > 0
depending only on 𝒟 such that the function 𝜙 := 𝜓𝒟 ◦ 𝑞 ◦ 𝑓 is smooth and plurisubharmonic
and we have √

−1𝜕𝜙 ∧ 𝜕𝜙 ≤ 𝜋∗𝑋𝜔L , (21)

𝑐𝜋∗𝑋𝜔L ≤
√
−1𝜕𝜕𝜙 ≤ 𝐶𝜋∗𝑋𝜔L . (22)
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□

Proof of Theorem 4.1. After replacing 𝑋 by a finite étale cover, by Theorem 4.2 there exist
Zariski dense representations {𝜏𝑖 : 𝜋1(𝑋) → 𝐺𝑖 (𝐾𝑖)}𝑖=1,...,ℓ where each 𝐺𝑖 is a reductive
algebraic group over a non-archimedean field 𝐾𝑖, along with a C-VHS L satisfying the stated
properties. Let 𝜇 : 𝑋 → 𝑌 be the birational morphism in Theorem 4.2. Then

{𝑇𝜏1 + · · · + 𝑇𝜏ℓ + 𝜔L} = {𝜇∗𝜔𝑌 }

where 𝜔𝑌 is a Kähler form on 𝑌 . Here 𝜔L :=
√
−1tr(𝜃 ∧ 𝜃∗) is a smooth (1, 1)-form defined

in Theorem 4.2. We choose a Kähler form 𝜔𝑋 on 𝑋 such that 𝜇∗𝜔𝑌 ≤ 𝜔𝑋 . We also denote by
𝜔𝑋 its pullback on the universal cover 𝑋 abusively.

Since each 𝑇𝜏𝑖 has continuous local potential, there exist a continuous quasi-psh function 𝜓
on 𝑋 , such that

𝑇𝜏1 + · · · + 𝑇𝜏ℓ + 𝜔L = 𝜇∗𝜔𝑌 −
√
−1𝜕𝜕𝜓. (23)

Note that 𝜓 is continuous and smooth outside a proper Zariski closed subset.
In what follows, for any form 𝜂 we shall denote by |𝜂 | its norm with respect to 𝜔𝑋 . Let

𝑢𝑖 : 𝑋 → Δ(𝐺𝑖) be the 𝜏𝑖-equivariant pluriharmonic map whose existence is ensured by
[GS92], where Δ(𝐺𝑖) is the Bruhat-Tits building of 𝐺𝑖. By (20), if we define

𝛽𝑖 (𝑥) =
√
−1𝜕𝑑2

Δ(𝐺𝑖) (𝑢𝑖 (𝑥), 𝑢𝑖 (𝑥0)), (24)

then by Lemma 3.6, 𝛽𝑖 has 𝐿1
loc-coefficients and is smooth outside a set of zero Lebesgue

measure. Moreover, there exists a constant 𝑐1 > 0 with |𝛽𝑖 (𝑥) | ≤a.e. 𝑐1(𝑑𝑋 (𝑥, 𝑥0) + 1) for any
𝑖.

Let 𝑓 : 𝑋 → 𝒟 be the period map of the C-VHS L and let 𝜙 = 𝜓𝒟 ◦ 𝑞 ◦ 𝑓 be the smooth
plurisubharmonic function defined in Proposition 4.3. By (21) and (22), we have

√
−1𝜕𝜙 ∧ 𝜕𝜙 ≤ 𝜋∗𝑋𝜔L and 𝑐2𝜋

∗
𝑋𝜔L ≤

√
−1𝜕𝜕𝜙 ≤ 𝑐3𝜋

∗
𝑋𝜔L (25)

for some constant 0 < 𝑐2 < 𝑐3. The first inequality implies that there exists a constant 𝑐4 > 0
such that

| (𝜕𝜙) (𝑥) | ≤ 𝑐4 (26)

for any 𝑥 ∈ 𝑋 . Define 𝛽 := 𝑖𝜕𝜙

𝑐2
+ ∑ℓ

𝑖=1 𝛽𝑖. Then 𝛽 has 𝐿1
loc-coefficients. By Lemma 3.6 and

(26), it satisfies

|𝛽(𝑥) | ≤a.e. 𝑐5(1 + 𝑑
𝑋
(𝑥, 𝑥0)) (27)

for some constant 𝑐5 > 0. By Proposition 3.3 and (25), we have

𝜋∗𝑋𝜇
∗𝜔𝑌 = 𝜋∗𝑋 (

ℓ∑︁
𝑖=1
𝑇𝜏𝑖 + 𝜔L +

√
−1𝜕𝜕𝜓) ≤ 𝑑𝛽 +

√
−1𝜕𝜕𝜋∗𝑋𝜓,

and over a dense open subset 𝑋◦ of 𝑋 whose complement has zero Lebesgue measure, we have

𝑑𝛽 +
√
−1𝜕𝜕𝜋∗𝑋𝜓 = 𝜋∗𝑋 (

ℓ∑︁
𝑖=1
𝑇𝜏𝑖 ) +

1
𝑐2

√
−1𝜕𝜕𝜙 + 𝜋∗𝑋

√
−1𝜕𝜕𝜓 ≤ 𝜋∗𝑋𝜇

∗𝜔𝑌 + 𝑐3 − 𝑐2

𝑐2
𝜋∗𝑋𝜔L .
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Since 𝜇 is birational, 𝜔sk := 𝜇∗𝜔𝑌 is a semi-Kähler form on 𝑋 . It then follows that

𝜋∗𝑋𝜔sk ≤ (𝑑𝛽 +
√
−1𝜕𝜕𝜋∗𝑋𝜓)ac ≤ 𝜋∗𝑋

(
𝜔sk +

𝑐3 − 𝑐2

𝑐2
𝜔L

)
≤ 𝑐6𝜋

∗
𝑋𝜔𝑋 (28)

for some constant 𝑐6 > 0. Therefore, for the 1-form 𝛽 on 𝑋 and the function 𝜓 on 𝑋 , they
satisfy the conditions in Theorem 2.4. We conclude the desired 𝐿2-vanishing theorem. □

Remark 4.4. If we compare the proof of Theorem 4.1 with that of the reductive Shafarevich
conjecture in [DYK23, Eys04], we observe striking similarities in their approaches. Indeed, in
[Eys04, Proposition 4.1.1], Eyssidieux proved the following result: let 𝑋 be a compact Kähler
normal variety. If there exist a continuous plurisubharmonic function 𝜙 : 𝑋 → R>0 and a
positive closed (1, 1)-current 𝑇 on 𝑋 with continuous potential such that {𝑇} is a Kähler class
and

√
−1𝜕𝜕𝜙 ≥ 𝜋∗

𝑋
𝑇 , then 𝑋 is Stein. Therefore, if 𝑋 is a smooth projective variety endowed

with a semisimple and large representation 𝜚 : 𝜋1(𝑋) → GL𝑁 (C), then we can prove that 𝑋
is Stein using Theorem 4.2 as follows.

Consider the continuous function

𝜙0 :=
ℓ∑︁
𝑖=1

𝑑2
Δ(𝐺𝑖) (𝑢𝑖 (𝑥), 𝑢𝑖 (𝑥0)) +

𝜙

𝑐2

on 𝑋 , where 𝑢𝑖 and 𝜙 are defined in the proof of Theorem 4.2. We then have

√
−1𝜕𝜕𝜙0 ≥ 𝜋∗𝑋 (

ℓ∑︁
𝑖=1
𝑇ℓ + 𝜔L).

Note that
∑ℓ
𝑖=1{𝑇ℓ +𝜔L} is a Kähler class in 𝑋 if 𝜚 is large by Theorem 4.2. Therefore, by the

above Eyssidieux’s criterion, we conclude that 𝑋 is Stein.

4.2. Proof of Theorem A. In this subsection we will prove Theorem A.

Theorem 4.5. Let 𝑋 be a smooth projective variety of dimension 𝑛. Let 𝜚 : 𝜋1(𝑋) → GL𝑁 (C)
be a linear representation. If 𝜚 is generically large, then 𝐻𝑝,0

(2) (𝑋) = 0 for 0 ≤ 𝑝 ≤ 𝑛 − 1.

Proof. Step 1. Let 𝑀 := 𝑀B(𝜋1(𝑋),GL𝑁 ) (C) be the character variety of 𝜋1(𝑋). By [DYK23,
Proof of Theorem 3.29], there exists
• a family of Zariski dense representations {𝜏𝑖 : 𝜋1(𝑋) → 𝐺 (𝐾𝑖)}𝑖=1,...,ℓ where each 𝐺𝑖 is

a reductive group over a non-archimedean local field 𝐾𝑖 of characteristic zero;
• a C-VHS L with the period domain 𝒟1;

such that the following properties hold. We define𝐻0
𝑀

to be the intersection of the kernels of all
semisimple representations 𝜋1(𝑋) → GL𝑁 (C). Denote by �̃�0

𝑀
:= 𝑋/𝐻0

𝑀
and 𝜋0 : �̃�0

𝑀
→ 𝑋

the projection map. Then the period map of L descends to 𝜙 : �̃�0
𝑀
→ 𝒟1. For the holomorphic

map

Φ0 : �̃�0
𝑀
→

ℓ∏
𝑖=1

𝑆𝜏𝑖 ×𝒟1

𝑥 ↦→ (𝑠𝜏1 ◦ 𝜋0, . . . , 𝑠𝜏ℓ ◦ 𝜋0, 𝜙(𝑥)),
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each connected component of the fiber of Φ0 is compact. Here 𝑠𝜏𝑖 : 𝑋 → 𝑆𝜏𝑖 is the Katzarkov-
Eyssidieux reduction for 𝜏𝑖 defined in Proposition 3.2. By [DYK23, Proof of Theorem 3.29],
Φ0 factors through

�̃�0
𝑀

𝑟0
𝑀→ 𝑆0

𝑀
(𝑋) 𝑟0→

ℓ∏
𝑖=1

𝑆𝜏𝑖 ×𝒟1

where 𝑟0
𝑀

is a proper surjective holomorphic fibration and 𝑟0 is holomorphic map with each
fiber being a discrete set. Moreover, 𝑆0

𝑀
(𝑋) does not contain compact subvarieties. Therefore,

the Galois group Aut( �̃�0
𝑀
/𝑋) induces an action on 𝑆0

𝑀
(𝑋) which is properly discontinuous,

and such that 𝑟0
𝑀

is equivariant with respect to the action by Aut( �̃�0
𝑀
/𝑋). By [DYK23, Lemma

3.28], replacing 𝑋 by a finite étale cover, we can assume that such an action on 𝑆0
𝑀
(𝑋) is free.

Taking the quotient of 𝑟0
𝑀

by Aut( �̃�0
𝑀
/𝑋), we obtain

�̃�0
𝑀

𝑋

𝑆0
𝑀
(𝑋) Sh0

𝑀 (𝑋)

∏ℓ
𝑖=1 𝑆𝜏𝑖 ×𝒟1

𝜋0

𝑟0
𝑀

sh0
𝑀

𝑞0

𝑟0

Here Sh0
𝑀 (𝑋) is called the reductive Shafarevich morphism associated with 𝑀 .

We shall use [EKPR12] to deal with the linear representation case. According to [EKPR12,
§5.2], there is a R-VMHS M of weight length 1 with the mixed period domain ℳ (cf.
[EKPR12, Lemma 5.4]) and an infinite Galois étale cover 𝜋1 : �̃�1

𝑀
→ 𝑋 (cf. [EKPR12, p.

1575] for the definition) factorizing through 𝜋0 : �̃�0
𝑀
→ 𝑋 such that

(a) the mixed period domain descends to 𝜛 : �̃�1
𝑀
→ ℳ;

(b) for the holomorphic map

Φ1 : �̃�1
𝑀
→

ℓ∏
𝑖=1

𝑆𝜏𝑖 ×𝒟1 ×ℳ

𝑥 ↦→ (𝑠𝜏1 ◦ 𝜋1, . . . , 𝑠𝜏ℓ ◦ 𝜋1, 𝜙(𝑥), 𝜛(𝑥)),

each connected component of the fiber of Φ is compact.

Here we abusively use 𝜙 : �̃�1
𝑀

→ 𝒟1 to denote by the composite of 𝜙 : �̃�0
𝑀

→ 𝒟1 with
�̃�1
𝑀
→ �̃�0

𝑀
. By [EKPR12, p. 1576], Φ1 factors through

�̃�1
𝑀

𝑟1
𝑀→ 𝑆1

𝑀
(𝑋) 𝑟1→

ℓ∏
𝑖=1

𝑆𝜏𝑖 ×𝒟1 ×ℳ
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where 𝑟1
𝑀

is a proper surjective holomorphic fibration and 𝑟1 is holomorphic map with each
fiber being a discrete set.

By [EKPR12, Lemma 5.7], 𝑆1
𝑀
(𝑋) does not contain compact subvarieties. Therefore, the

Galois group Aut( �̃�1
𝑀
/𝑋) induces an action on 𝑆1

𝑀
(𝑋) which is properly discontinuous, and

such that 𝑟1
𝑀

is equivariant with respect to the action by Aut( �̃�1
𝑀
/𝑋). Replacing 𝑋 by a finite

étale cover, we assume that such an action is free. Taking the quotient of 𝑟1
𝑀

by Aut( �̃�1
𝑀
/𝑋),

we obtain:

�̃�1
𝑀

𝑋 𝑋 �̃�0
𝑀

𝑆1
𝑀
(𝑋) Sh1

𝑀 (𝑋) Sh0
𝑀 (𝑋) 𝑆0

𝑀
(𝑋)

∏ℓ
𝑖=1 𝑆𝜏𝑖 ×𝒟1 ×ℳ

∏ℓ
𝑖=1 𝑆𝜏𝑖 ×𝒟1

Φ1

𝜋1

𝑟1
𝑀

sh1
𝑀 sh0

𝑀 𝑟0
𝑀

𝜋0

Φ0
𝑞1

étale

𝑟1

𝑔 𝑞0

étale

𝑟0

(29)

By [EKPR12, p. 1549], if 𝜚 is generically large, then sh1
𝑀 is a bimeromorphic map.

Step 2. By [DYK23, Proof of Theorem 4.31] (which is exactly Theorem 4.2), there exists a
Kähler form 𝜔𝑇 on the normal projective variety Sh0

𝑀 (𝑋) such that

{𝑇𝜏1 + · · · + 𝑇𝜏ℓ +
√
−1tr(𝜃 ∧ 𝜃∗)} ∈ 𝐻1,1(𝑋,R) = {(sh0

𝑀)
∗𝜔𝑇 }. (30)

Here 𝑇𝜏𝑖 is the canonical current for 𝜏𝑖 defined in Definition 3.1 and
√
−1tr(𝜃 ∧ 𝜃∗) is the

semi-positive (1, 1)-form over 𝑋 defined in Theorem 4.2. Since each 𝑇𝜏𝑖 has continuous local
potential, there exist a continuous function 𝜓 on 𝑋 , such that

𝑇𝜏1 + · · · + 𝑇𝜏ℓ + 𝜔L = (sh0
𝑀)

∗𝜔𝑇 −
√
−1𝜕𝜕𝜓.

Let 𝒟2 be the graded period domain of ℳ. Note that ℳ → 𝒟2 is a holomorphic vector
bundle (cf. [Car87]). Let 𝑍 be any fiber of 𝑋 → Sh0

𝑀 (𝑋). Let �̃�1
𝑀

be any connected
component of the inverse image 𝜋−1

1 (𝑍). Then there exists some 𝑃 ∈ 𝒟2 such that for the fiber
𝑉 of ℳ → 𝒟2 at 𝑃 ∈ 𝒟2, we have 𝜛 |

𝑍1
𝑀

: �̃�1
𝑀
→ 𝑉 . Moreover, by [EKPR12, p. 1575-1576],

after we replace 𝑍 by a finite étale cover, there exists a map 𝑎 : 𝑍sn → 𝐴, where 𝐴 is an abelian
variety and 𝑍sn is the semi-normalization of 𝑍 such that, 𝑞 := 𝜛 |

𝑍1
𝑀

factors as

�̃�1
𝑀

sn
𝐴

�̃�1
𝑀

𝑉

𝑝

𝑞

where �̃�1
𝑀

sn
is the semi-normalization of �̃�1

𝑀
, 𝐴 is the universal cover of 𝐴, 𝑝 is the lift of

𝑎 which is proper, and 𝐴 → 𝑉 is a linear injective map. Since 𝑟1 has discrete fibers, sh1
𝑀 is
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proper bimeromorphic, and the image of �̃�1
𝑀

under the composite map

𝑆1
𝑀
(𝑋) 𝑟1→

ℓ∏
𝑖=1

𝑆𝜏𝑖 ×𝒟1 ×ℳ →
ℓ∏
𝑖=1

𝑆𝜏𝑖 ×𝒟1

is constant, it follows that dim 𝑝(�̃�1
𝑀

sn
) = dim �̃�1

𝑀

sn
if 𝑍 is a general fiber of 𝑋 → Sh0

𝑀 (𝑋).
Here

∏ℓ
𝑖=1 𝑆𝜏𝑖 × 𝒟1 × ℳ → ∏ℓ

𝑖=1 𝑆𝜏𝑖 × 𝒟1 is the natural projection map. This implies the
following result.

Claim 4.6. For a general fiber 𝑍 of 𝑋 → Sh0
𝑀 (𝑋), there is a map 𝑎 : 𝑍sn → 𝐴 to an abelian

variety 𝐴 such that
dim 𝑍sn = dim 𝑎(𝑍sn). (31)

Step 3. For each 𝑖, let 𝛽𝑖 be 1-form on 𝑋 defined in (24). By Proposition 3.3, it is generically
smooth and satisfies that 𝑑𝛽𝑖 ≥ 𝜋∗

𝑋
𝑇𝜏𝑖 , with equality holding outside a closed subset of zero

Lebesgue measure. We fix a Kähler metric 𝜔𝑋 on 𝑋 and, by slight abuse of notation, also
denote its lift on the universal cover 𝑋 by 𝜔𝑋 . By Lemma 3.6, there exists a number 𝑐0 > 0
and a dense open set 𝑋◦ ⊂ 𝑋 whose complement has zero Lebesgue measure such that for any
𝑖 ∈ {1, . . . , ℓ} and 𝑥 ∈ 𝑋◦, we have

|𝛽𝑖 (𝑥) |𝜔𝑋
≤ 𝑐0(1 + 𝑑

𝑋
(𝑥, 𝑥0)). (32)

Consider the period map 𝑝 : 𝑋 → 𝒟1 of L and let 𝜙 = 𝜓𝒟1 ◦ 𝑞 ◦ 𝑝 be the positive smooth
plurisubharmonic function defined in Proposition 4.3. By eq. (21) and (22), we have

𝑖𝜕𝜙 ∧ 𝜕𝜙 ≤ 𝜋∗𝑋𝜔L ,

𝑐1𝜋
∗
𝑋𝜔L ≤

√
−1𝜕𝜕𝜙 ≤ 𝑐2𝜋

∗
𝑋𝜔L

for some constant 0 < 𝑐1 < 𝑐2. The first inequality implies that there exists a constant 𝑐3 > 0
such that

| (𝜕𝜙) (𝑥) |𝜔𝑋
≤ 𝑐3 (33)

for any 𝑥 ∈ 𝑋 . Write

𝛽 := 𝛽1 + · · · + 𝛽ℓ +
𝑖

𝑐1
𝜕𝜙.

Then 𝛽 has 𝐿1
loc-coefficients and is smooth outside a set of zero Lebesgue measure. By (32),

we have

|𝛽(𝑥) |𝜔𝑋
≤a.e. 𝑐4(1 + 𝑑

𝑋
(𝑥, 𝑥0)) (34)

for some constant 𝑐4 > 0.
By (30), one has

𝜋∗𝑋 (sh0
𝑀)

∗𝜔𝑇 ≤ (𝑑𝛽 + 𝜓))ac ≤ 𝜋∗𝑋

(
(sh0

𝑀)
∗𝜔𝑇 +

𝑐2 − 𝑐1

𝑐1
𝜔L

)
≤ 𝑐6𝜋

∗
𝑋𝜔𝑋 (35)

for some constant 𝑐6 > 0. We write 𝑓 : 𝑋 → 𝑌 for sh0
𝑀 : 𝑋 → 𝑌 . Therefore, for the 1-form 𝛽

and the function 𝜓, they satisfy the conditions in Theorem 2.4.
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Step 4. We will apply Theorem 2.4 and use its notations as defined therein, without re-
explaining their meanings. Assume by contradiction that, for some 𝑝 ∈ {0, . . . , 𝑛 − 1}, there
is a non-trivial 𝛼 ∈ 𝐻𝑝,0

(2) (𝑋). By Theorem 2.4, we have 𝑛 > 𝑚 and 𝑝 > 𝑚. Furthermore, over
the Zariski open subset 𝑌◦ of 𝑌 reg, we have

𝛼 |
𝑋◦ ∈ 𝐻0(𝑋◦, 𝑓 ∗Ω𝑚

𝑌◦ ⊗ Ω
𝑝−𝑚
𝑋◦ ),

where𝑌◦ := 𝜋−1
𝑌
(𝑌◦) and 𝑋◦ := 𝑓 −1(𝑌◦). We pick any 𝑦0 ∈ 𝑌◦, and choose a simply connected

coordinate open subset (𝑉 ;𝑤1 . . . , 𝑤𝑚) centered at 𝑦0. We abusively denote by 𝑉 a connected
component of 𝜋−1

𝑌
(𝑉). Then 𝑑𝑤1 ∧ · · · ∧ 𝑑𝑤𝑚 is a nonwhere-vanishing holomorphic 𝑚-form

on 𝑉 . Let Ω be a connected component of 𝑓 −1(𝑉). We denote by 𝑔 : Ω → 𝑉 the restriction of
𝑓 on Ω. Then 𝑔 is a submersion with connected fibers. For any 𝑦 ∈ 𝑉 , by Step 3 in the proof
of Theorem 2.4, 𝑑𝑤1 ∧ · · · ∧ 𝑑𝑤𝑚 induces a unique holomorphic (𝑝 − 𝑚)-form 𝛼𝑦 on 𝑔−1(𝑦)
defined in (15) within suitable coordinate open subset (𝑈; 𝑧1, . . . , 𝑧𝑛) of Ω. Then by (14) and
(15) together with the Fubini theorem, we have

0 ≤
∫
𝑉

(∫
𝑔−1 (𝑦)

𝑖 (𝑝−𝑚)
2
𝛼𝑦 ∧ 𝛼𝑦 ∧ (𝜔𝑋 |𝑔−1 (𝑦))𝑛−𝑝

)
𝑖𝑑𝑤1 ∧ 𝑑�̄�1 ∧ · · · ∧ 𝑖𝑑𝑤𝑚 ∧ 𝑑�̄�𝑚

=

∫
Ω

𝑖𝑝
2
𝛼 ∧ �̄� ∧ 𝜔𝑛−𝑝

𝑋
≤
∫
𝑋

|𝛼 |2 dvol < +∞.

Therefore, there is a subset 𝑍 of 𝑉 with zero Lebesgue measure, such that for any 𝑦 ∈ 𝑉\𝑍 ,
we have ∫

𝑔−1 (𝑦)
𝑖 (𝑝−𝑚)

2
𝛼𝑦 ∧ 𝛼𝑦 ∧ (𝜔𝑋 |𝑔−1 (𝑦))𝑛−𝑝 < ∞. (36)

Thus, we construct an 𝐿2 holomorphic (𝑝 − 𝑚)-form 𝛼𝑦 on 𝑔−1(𝑦) for any 𝑦 ∈ 𝑉\𝑍 , which is
also 𝑑-closed by Theorem 2.4.(iii). We note that for any 𝑥 ∈ 𝑓 −1(𝑦), 𝛼𝑦 (𝑥) = 0 if and only if
𝛼(𝑥) = 0.

Denote by 𝑋𝑦 := 𝑓 −1(𝑦). By Claim 4.6, if we choose a general point 𝑦 ∈ 𝑉\𝑍 , then
there exists a morphism 𝑎 : 𝑋𝑦 → 𝐴 to an abelian variety 𝐴 such that dim 𝑋𝑦 = dim 𝑎(𝑋𝑦).
Moreover, for a connected component �̃�′

𝑦 of 𝜋−1
1 (𝑋𝑦), there is a lift �̃�′

𝑦 → 𝐴 of 𝑎. Note that
𝑔−1(𝑦) is a connected component of 𝜋−1

𝑋
(𝑋𝑦). Then 𝑔−1(𝑦) dominates �̃�𝑦

′
. The conditions in

Corollary 2.7 are fulfilled. It follows that 𝛼𝑦 = 0. Hence, 𝛼(𝑥) = 0 almost everywhere. By
continuity, we conclude that 𝛼(𝑥) = 0 everywhere. This yields a contradiction. Therefore,
𝐻
𝑝,0
(2) (𝑋) = 0 for any 𝑝 ∈ {0, . . . , 𝑛 − 1}. The theorem is proved. □

We will apply Theorem 4.5 to prove Theorem A.

Proof of Theorem A. Let H 𝑛,𝑞

(2) (𝑋) be the 𝐿2-harmonic (𝑛, 𝑞)-forms with respect to the metric
𝜔𝑋 . By the Lefschetz theorem in [Gro91, Theorem 1.2.A]), for any 𝑞 ∈ {1, . . . , 𝑛},

H 𝑛−𝑞,0
(2) (𝑋) → H 𝑛,𝑞

(2) (𝑋)
𝛼 ↦→ 𝜔𝑞 ∧ 𝛼
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is an isomorphism. Since we have an isomorphism H 𝑛,𝑞

(2) (𝑋) ≃ 𝐻
𝑛,𝑞

(2) (𝑋), this establishes that
𝐻
𝑛,𝑞

(2) (𝑋) for 𝑞 ∈ {1, . . . , 𝑛}.
We denote by Γ = 𝜋1(𝑋) and dimΓ 𝐻

𝑛,𝑞

(2) (𝑋) the Von Neumann dimension of 𝐻𝑛,𝑞

(2) (𝑋) (cf.
[Ati76] for the definition). By Atiyah’s 𝐿2-index theorem along with Theorem A.(i), we have

𝜒(𝑋, 𝐾𝑋) =
𝑛∑︁
𝑞=0

(−1)𝑞 dimΓ 𝐻
𝑛,𝑞

(2) (𝑋) = dimΓ 𝐻
𝑛,0
(2) (𝑋) ≥ 0. (37)

Theorem A.(ii) is proved.
If the strict inequality (37) holds, then 𝐻𝑛,0

(2) (𝑋) ≠ 0. We then apply [Kol95, Corollary 13.10]
to conclude that 𝐾𝑋 is big. Theorem A.(iii) follows. The theorem is proved. □
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