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Abstract. If 𝑋 is a closed 2𝑑-dimensional aspherical manifold, i.e., the universal cover of
𝑋 is contractible, then the Singer-Hopf conjecture predicts that (−1)𝑑𝜒(𝑋) ≥ 0. We prove
this conjecture when 𝑋 is a complex projective manifold whose fundamental group admits an
almost faithful linear representation over any field. In fact, we prove a much stronger statement
that if 𝑋 is a complex projective manifold with large fundamental group and 𝜋1 (𝑋) admits an
almost faithful linear representation, then 𝜒(𝑋,P) ≥ 0 for any perverse sheaf P on 𝑋 .

To prove the main result, we introduce a vanishing cycle functor of multivalued one-
forms. Then using techniques from non-abelian Hodge theories in both archimedean and
non-archimedean settings, we deduce the desired positivity from the geometry of pure and
mixed period maps.

Contents

1. Introduction 2
1.1. Sketch of the proof 3
1.2. Relation with the Shafarevich conjecture and hyperbolicity 4
Acknowledgement 5
Notation and Convention. 5
2. Preliminaries 5
2.1. Constructible functions 6
2.2. Constructible sheaves and characteristic cycles 6
2.3. A proper pushforward formula 8
2.4. Multivalued one-forms 9
2.5. A factorization map 10
2.6. Shafarevich morphism 11
2.7. Pure Hodge structures and period maps 11
2.8. Mixed Hodge structures and mixed period maps 12
3. Nearby cycle functor of a multivalued one-form 13
3.1. Definition of Φ𝜂 13
3.2. Some properties of Φ𝜂 16
3.3. Proof of Theorem 1.5 in the case when char(𝐾) > 0 17
4. Period maps of C-VHS and positivity 17
4.1. Positivity from the period maps 17
4.2. Proof of Theorem 1.5 in the case when 𝐾 = C and 𝜌 is semisimple 20
5. Mixed period maps of R-VMHS and positivity 21
5.1. Positivity from the mixed period maps 21
5.2. Techniques from the linear Shafarevich conjecture 26
5.3. Proof of Theorem 1.5 in the case when 𝐾 = C and 𝜌 is linear 28

1



2 Y. DENG AND B. WANG

References 29

1. Introduction

In the 1930s, Hopf conjectured that a closed 2𝑛-dimensional compact Riemannian manifold
𝑋 with non-positive sectional curvature satisfies (−1)𝑛𝜒(𝑋) ≥ 0 (see [Yau82, Problem 10]).
Singer proposed to study Hopf’s conjecture using 𝐿2-cohomology groups of the universal
cover of 𝑋 , which naturally lead to the following more general conjecture.

Conjecture 1.1 (Singer-Hopf). Let 𝑋 be a closed 2𝑛-dimensional manifold. If 𝑋 is aspherical,
i.e., the universal cover of 𝑋 is contractible, then

(−1)𝑛𝜒(𝑋) ≥ 0.

The above conjecture was also considered by Thurston for 4-manifolds ([Kir97, Problem
4.10]). When 𝑛 = 1, Conjecture 1.1 follows from the easy fact that a Riemann surface is
aspherical if and only if its genus is at least 1. If we know that 𝑋 admits a Riemannian metric
with non-positive sectional curvature, then the conjecture follows from the Gauss-Bonnet
theorem when 𝑛 = 2 (see [Che55]). Beyond this case, the conjecture is widely open.

If we assume 𝑋 is a complex projective manifold, then some progresses have been made in
[Gro91, JZ00, CX01, DCL24, LMW21, AW21, LIP24], to quote only a few. In [LMW21],
it was noticed that for projective manifolds, a natural generalization of being aspherical is
having large fundamental group. Here we recall that a projective manifold 𝑋 is said to
have large fundamental group if for any irreducible subvariety 𝑍 ⊂ 𝑋 , the image of the
composition 𝜋1(𝑍norm) → 𝜋1(𝑍) → 𝜋1(𝑋) is infinite, where 𝑍norm denotes the normalization
of 𝑍 . Moreover, the assertion that (−1)𝑛𝜒(𝑋) ≥ 0 was strengthened to

𝜒(𝑋,P) ≥ 0 for any perverse sheaves P on 𝑋 . (1)

These ideas were further pursued in [AW21]. Even though not explicitly stated, the following
conjecture was expected to hold.

Conjecture 1.2. If 𝑋 is a complex projective manifold with large fundamental group, then
𝜒(𝑋,P) ≥ 0 for any perverse sheaves P on 𝑋 .

In [AW21], the above conjecture is proved when there exists a semisimple, almost faithful,
cohomologically rigid representation 𝜋1(𝑋) → GL(𝑟,C). Here we recall that a linear repre-
sentation is called almost faithful if the kernel of the representation is finite, and it is called
cohomologically rigid, if it has no nontrivial first order deformation.

In this paper, we prove Conjecture 1.2 within a much broader framework: we merely require
the existence of an almost faithful linear representation 𝜋1(𝑋) → GL(𝑟, 𝐾) over a field 𝐾
of arbitrary characteristic, without assuming semisimplity or cohomological ridigity of the
representation.

Given a normal projective variety 𝑋 and a field𝐾 , a representation 𝜌 : 𝜋1(𝑋) → GL(𝑟, 𝐾) is
called large, if for any irreducible subvariety 𝑍 ⊂ 𝑋 , the composition 𝜋1(𝑍norm) → 𝜋1(𝑋)

𝜌
−→

GL(𝑟, 𝐾) has infinite image.
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Theorem 1.3. Let 𝑋 be a projective manifold. If there is a large representation 𝜌 : 𝜋1(𝑋) →
GL(𝑟, 𝐾) where 𝐾 is any field, then 𝜒(𝑋,P) ≥ 0 for any perverse sheaves P on 𝑋 . In
particular, (−1)dim 𝑋 𝜒(𝑋) ≥ 0.

Notice that if 𝑋 has large fundamental group, and if 𝜌 is almost faithful, then 𝜌 is large.
Therefore, the following corollary is immediate.

Corollary 1.4. Let 𝑋 be a projective manifold with large fundamental group (e.g. 𝑋 is
aspherical). If there exists an almost faithful representation 𝜌 : 𝜋1(𝑋) → GL(𝑟, 𝐾), then for
any perverse sheaf P on 𝑋 , 𝜒(𝑋,P) ≥ 0. In particular, Singer-Hopf conjecture holds for 𝑋 .

A slightly stronger formulation of Theorem 1.3 is the following.

Theorem 1.5. Let 𝑋 be a projective manifold and let 𝜌 : 𝜋1(𝑋) → GL(𝑟, 𝐾) be a large
representation, where 𝐾 is any field. Then, for any closed irreducible subvariety 𝑍 ⊂ 𝑋 ,

𝑇∗𝑍𝑋 · 𝑇∗𝑋𝑋 ≥ 0 (2)
where 𝑇∗

𝑍
𝑋 denotes the conormal variety of 𝑍 and · denotes the intersection number in 𝑇∗𝑋 .

Proof of Theorem 1.3 assuming Theorem 1.5. We need to use the notions of characteristic cy-
cle and conormal variety which will be reviewed in section 2.2.

Since the characteristic cycle of a perverse sheaf is always effective (cf. Proposition 2.2),
we have

𝐶𝐶 (P) =
∑︁

1≤𝑖≤𝑚
𝑛𝑖𝑇
∗
𝑍𝑖
𝑋,

where 𝑍𝑖 are irreducible subvarieties of 𝑋 and 𝑛𝑖 ∈ Z>0. By the global index theorem (cf.
Theorem 2.1) and Theorem 1.5, we have

𝜒(𝑋,P) = 𝐶𝐶 (P) · 𝑇∗𝑋𝑋 =
∑︁

1≤𝑖≤𝑚
𝑛𝑖𝑇
∗
𝑍𝑖
𝑋 · 𝑇∗𝑋 ≥ 0. □

Notice that since 𝜋1(𝑋) is finitely generated, having a large representation 𝜋1(𝑋) →
GL(𝑟, 𝐾) for a field 𝐾 of characteristic zero is equivalent to having a large representation
𝜋1(𝑋) → GL(𝑟,C). Therefore, in Theorem 1.5, we can assume either char(𝐾) > 0 or 𝐾 = C.

1.1. Sketch of the proof. We will use techniques from the linear Shafarevich conjecture in
[DYK23, DY24, Eys04, EKPR12] to establish Theorem 1.5. As in [AW21], Arapura and the
second named author proved Theorem 1.5 assuming 𝜌 underlies a complex variation of Hodge
structure (C-VHS for short) with discrete monodromy. When 𝜌 does not satisfy such property,
in [DYK23] Yamanoi and the first named author showed that one can produce non-trivial multi-
valued one-forms on 𝑋 . Our approach involves an iterative utilization of both multi-valued
one-forms and the period maps of C-VHS to deduce the inequality (2).

Let us briefly explain our strategy. We first observe that if there is a 𝑑-valued one-form
whose image in 𝑇∗𝑋 intersects 𝑇∗

𝑍
𝑋 at finitely many points, then the inequality (2) holds, since

𝑑 times the left-hand side is equal to the number of intersection points counting multiplicity.
In general, we introduce a vanishing cycle functor Φ𝜂 of a 𝑑-valued one-form 𝜂 acting

on the free abelian group generated by conormal varieties. We show that 𝑑 𝑇∗
𝑍
𝑋 · 𝑇∗

𝑋
𝑋 =

Φ𝜂 (𝑇∗𝑍𝑋) · 𝑇∗𝑋𝑋 . Using Φ𝜂, we can reduce (2) to the same inequality with 𝑍 replaced by
smaller subvarieties, as long as the restriction of 𝜂 to the smooth locus of 𝑍 is non-trivial.
Then the proof of Theorem 1.5 is divided into the following three cases.
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Case (i): when char(𝐾) > 0. In this case, we can prove that the above reduction process
continues until 𝑍 becomes points. When 𝑍 is a point, the inequality (2) is obvious.

Case (ii): when 𝐾 = C and 𝜌 is semisimple. In this case, when the above reduction
process terminates, 𝑍norm underlies aC-VHS with large monodromy representation and discrete
monodromy group. As proved in [AW21], 𝑍norm then admits a finite morphism to the period
domain of such C-VHS. Then the inequality (2) can be deduced from the curvature property
of the period domain.

Case (iii): when 𝐾 = C and 𝜌 is not semisimple. In this case, when the reduction process
terminates, 𝑍norm admits a complex variation of mixed Hodge structure (R-VMHS) such that
its mixed period map 𝑍univ

norm →ℳ has discrete fibers. In this case, two extra difficulties occur
compared to Case (ii):
• the monodromy group may not act on the mixed period domain discretely, and thus we

cannot take the quotient of the period map by the monodromy group.
• The mixed period domain does not have the desired non-positive curvature in the pure

case.
This is resolved by a technical result (cf. Proposition 5.3) which allows us to simultaneously
explore the geometry of the mixed period map of the R-VMHS and the period map of the
C-VHS corresponding to the semi-simplification of the R-VMHS.

In [AW21], we obtain discreteness of the monodromy group from a deep theorem of Esnault-
Groechenig ([EG18], see also [Esn23] for a survey). In this paper, the discreteness of mon-
odromy groups are deduced from nonarchemidean Hodge theory, which is same as the approach
in [BKT13].

In theory, we could bypass Case (ii) and directly prove the more general Case (iii). However,
we decide to write the proof in separate cases to isolate the few technical arguments and to
benefit the readers who would be satisfied understanding the proof up to Case (ii).

1.2. Relation with the Shafarevich conjecture and hyperbolicity. The Shafarevich conjec-
ture predicts that the universal cover of a complex normal projective variety 𝑋 is holomor-
phically convex. In particular, if 𝑋 has large fundamental group, then its universal cover is
conjectured to be Stein. Currently, this conjecture is proved for the following cases,
(1) when 𝑋 is smooth and 𝜋1(𝑋) admits a faithful linear representation over C, by Eyssidieux

et. al. in [EKPR12];
(2) when 𝑋 is not necessarily smooth and 𝜋1(𝑋) admits a faithful reductive linear represen-

tation over C, by the first named author, Yamanoi and Katzarkov in [DYK23];
(3) when 𝑋 is a normal surface and 𝜋1(𝑋) admits an almost faithful linear representation

over a field of positive characteristic in [DY24].
The proofs of the Shafarevich conjecture use nonabelian Hodge theories both in the

archimedean setting by Simpson [Sim92] and non-archimedean setting by Gromov-Schoen
[GS92].

In this paper, we do not use any result about holomorphic convexity or Steinness. Neverthe-
less, we use both archimedian and nonarchimedian nonabelian Hodge theories in the same way
as in the proof of Shafarevich conjectures. These techiniques are robust tools in studying the
Shafarevich conjecture, hyperbolicity of algebraic varieties (cf. e.g. [Yam10, CDY22, DY24]),
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and the Singer-Hopf conjecture in the linear case. Our main result Theorem 1.5 is certain posi-
tivity property of the cotangent bundle of 𝑋 , which is known to be related to the hyperbolicity of
𝑋 . For example, a projective manifold with ample cotangent bundle is Kobayashi hyperbolic.

Even though our result relies on 𝑋 to have a large fundamental group, we hope our positivity
(2) can be directly related to hyperbolicity. For example, does (2) always hold for irreducible
subvarieties 𝑍 in a Kobayashi hyperbolic projective manifold 𝑋? In general, it is also inter-
esting to find sufficient conditions on a representation of 𝜋1(𝑋) such that (2) is always strict
inequality. In [CDY22, DY24], it is proved that when the Zariski closure of a (generically) large
representation 𝜚 : 𝜋1(𝑋) → GL(𝑟, 𝐾) is a semisimple algebraic group, then 𝑋 is “almost” hy-
perbolic. This condition is sharp as one has to exclude the case of abelian varieties. Hence we
conjecture that the inequality (2) is strict if the Zariski closure of 𝜚(Im[𝜋1(𝑍norm) → 𝜋1(𝑋)])
is a semisimple algebraic group for every positive-dimensional subvariety 𝑍 of 𝑋 . In this case,
𝑋 is Kobayashi hyperbolic by [Yam10, CDY22, DY24].

Recently, various generalizations of the Singer-Hopf conjecture in the algebra-geometric
setting are formulated, e.g., in the singular setting as in [Max23], and in the coherent setting as
in [AMW23]. Here, we also want to propose Singer-Hopf type conjectures for quasi-projective
varieties. For example, we conjecture that if the universal cover of a quasi-projective manifold
𝑋 is a bounded symmetric space, then 𝜒(𝑋,P) ≥ 0 for any perverse sheaf on 𝑋 (with respect
to an algebraic stratification).

Acknowledgement. This paper builds upon previous collaborations of the second author with
Yongqiang Liu, Laurentiu Maxim, and Donu Arapura, as well as the collaboration of the first
author with Katsutoshi Yamanoi. We are grateful of the numerous enlightening conversations
that have played a crucial role in the development of this work. We thank Jörg Schürmann
for carefully reviewing an earlier draft of this paper and providing valuable feedback. We also
thank Hélène Esnault for patiently answering our questions. Additionally, we have benefited
greatly from discussions with Xiping Zhang, Jie Liu, and Qizheng Yin. The second author
thanks Peking University and BICMR for the generous hospitality and support during the
writing of this paper. The first author is partially supported by the French Agence Nationale
de la Recherche (ANR) under reference ANR-21-CE40-0010 (KARMAPOLIS). The second
author is partially supported by a Simons fellowship.

Notation and Convention.
• For any analytic/algebraic variety 𝑍 , we denote by 𝑍norm its normalization, by 𝑍reg the

smooth locus of 𝑍 , and by 𝑍univ its universal cover.
• For any algebraic variety 𝑋 , any field 𝐾 and any representation 𝜎 : 𝜋1(𝑋) → GL(𝑟, 𝐾),

𝐿𝜎 denotes the corresponding local system.
• Let 𝜎 : Γ → GL(𝑟,C) where Γ is a finitely generated group. We denote by 𝜎𝑠𝑠 : Γ →

GL(𝑟,C) its semisimplification.

2. Preliminaries

We first review some results about constructible functions, constructible sheaves, charac-
teristic cycles and the global index formula. The recent survey article [MS22] gives a more
detailed summery of these subjects.
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2.1. Constructible functions. Let 𝑋 be an analytic variety. A function 𝛾 : 𝑋 → Z is called
constructible, if there exists a locally finite stratification of 𝑋 into locally closed smooth
subvarieties 𝑋 =

⊔
𝑖∈𝐼 𝑋𝑖, such that the restriction of 𝛾 to each 𝑋𝑖 is constant. The Euler

characteristic
𝜒(𝛾) =

∑︁
𝑖∈𝐼

𝛾(𝑋𝑖) · 𝜒(𝑋𝑖)

is well-defined when the above stratification can be chosen to be finite and each stratum is
homotopy equivalent to a finite CW-complex, e.g., when 𝑋 is compact or when 𝑋 is an algebraic
variety and each stratum is a locally closed algebraic subvariety.

If 𝑓 : 𝑌 → 𝑋 is a holomorphic map between analytic varieties, then the pullback 𝑓 ∗(𝛾) B
𝛾 ◦ 𝑓 is a constructible function on 𝑌 .

If 𝑔 : 𝑋 → 𝑌 is a proper holomorphic map between complex analytic varieties, then the
pushforward of a constructible function 𝑔∗(𝛾) defined by

𝑔∗(𝛾) (𝑦) = 𝜒
(
𝑔−1(𝑌 ), 𝛾 |𝑔−1 (𝑦)

)
is a constructible function. Moreover, we have 𝜒(𝑌, 𝑔∗(𝛾)) = 𝜒(𝑋, 𝛾) when 𝑌 is compact or
when 𝑔 is a regular map of algebraic varieties and the constructibility is algebraic.

Given a constructible complex F defined over a field, we can define its stalkwise Euler
characteristic function 𝜒𝑠𝑡 (F ) by

𝜒𝑠𝑡 (F )(𝑥) = 𝜒(F𝑥).

2.2. Constructible sheaves and characteristic cycles. Let 𝑋 be a complex manifold. Let
𝐷𝑏
𝑐 (𝑋, 𝐾) be the derived category of 𝐾-constructible complexes,and let 𝑃𝑒𝑟𝑣(𝑋) be its subcat-

egory of perverse sheaves. We are interested in the Euler characteristics of perverse sheaves,
e.g., Q𝑋 [dim 𝑋]. The Euler characteristic of a constructible complex can be computed via
characteristic cycles.

Given any irreducible analytic subvariety 𝑍 of 𝑋 , its conormal variety 𝑇∗
𝑍
𝑋 is defined to be

the closure of the conormal bundle 𝑇∗
𝑍reg
𝑋 in 𝑇∗𝑋 . In particular, the conormal variety 𝑇∗

𝑋
𝑋

of 𝑋 itself is equal to the zero section of 𝑇∗𝑋 . Every conormal variety 𝑇∗
𝑍
𝑋 is conic and

Lagrangian in 𝑇∗𝑋 , and conversely, every conic Lagrangian subvariety of 𝑇∗𝑋 is a conormal
variety. Denote by 𝐿 (𝑋) the abelian group of locally finite conic Lagrangian cycles on 𝑇∗𝑋 .
The characteristic cycle is a group homomorphism

𝐶𝐶 : 𝐾0
(
𝐷𝑏
𝑐 (𝑋, 𝐾)

)
→ 𝐿 (𝑋),

where 𝐾0(𝐷𝑏
𝑐 (𝑋, 𝐾)) is the Grothendieck group of 𝐷𝑏

𝑐 (𝑋, 𝐾). We will not review its precise
definition (see e.g., [Dim04, Definition 4.3.19] and [KS90, Chapter IX]). Instead, we focus on
the following two important properties.

Theorem 2.1 ([Kas85], [Dim04, Theorem 4.3.25]). Let 𝑋 be a complex manifold, and let F
be a constructible complex on 𝑋 with compact support. Then

𝜒(𝑋, F ) = 𝐶𝐶 (F ) · 𝑇∗𝑋𝑋
where the right-hand side denotes the intersection number in 𝑇∗𝑋 .

Note that even though 𝑇∗𝑋 is not compact, the intersection number is well-defined because
it can be defined as a zero cycle in the support of F in 𝑋 (see [Ful98, Chapter 6]).
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Proposition 2.2 ([Dim04, Corollary 5.2.24]). For any perverse sheaf P on 𝑋 , 𝐶𝐶 (P) is
effective. In other words,

𝐶𝐶 (P) =
∑︁
𝑖∈𝐼
𝑛𝑖𝑇
∗
𝑍𝑖
𝑋,

where 𝑍𝑖 are irreducible subvarieties of 𝑋 , 𝑛𝑖 ∈ Z>0 and the sum is locally finite.

Given a constructible complex F on a complex manifold 𝑋 , we can define its stalkwise
Euler characteristic function 𝜒𝑠𝑡 (F ) : 𝑋 → Z by

𝜒𝑠𝑡 (F )(𝑥) = 𝜒(F𝑥).
Denote the abelian group of Z-valued constructible functions on 𝑋 by 𝐹 (𝑋). Then 𝜒𝑠𝑡

defines a group homomorphism

𝜒𝑠𝑡 : 𝐾0
(
𝐷𝑏
𝑐 (𝑋, 𝐾)

)
→ 𝐹 (𝑋).

Moreover, the characteristic cycle 𝐶𝐶 : 𝐾0
(
𝐷𝑏
𝑐 (𝑋, 𝐾)

)
→ 𝐿 (𝑋) factors through 𝜒𝑠𝑡 . By

abusing notations, we also use 𝐶𝐶 to denote induced group homomorphism
𝐶𝐶 : 𝐹 (𝑋) → 𝐿 (𝑋).

Given an irreducible subvariety 𝑍 of 𝑋 , the local Euler obstruction function 𝐸𝑢𝑍 is a
constructible function on 𝑍 (or on 𝑋 with value 0 outside 𝑍) uniquely characterized by the
property that

𝐶𝐶 (𝐸𝑢𝑍 ) = (−1)dim 𝑍𝑇∗𝑍𝑋.

It turns out that 𝐸𝑢𝑍 is an intrinsic invariant of 𝑍 , which does not depend on the embedding to
a smooth variety (see e.g. [Dim04, Page 100-102] and [Mas20, Sections 3,4]). Moreover, as
𝑍 varies through all irreducible analytic subvarieties of 𝑋 , 𝐸𝑢𝑍 form a basis of 𝐹 (𝑋).

The above global index formula implies that

𝜒(𝐸𝑢𝑍 ) = (−1)dim 𝑍𝑇∗𝑍𝑋 · 𝑇∗𝑋𝑋. (3)

The advantage of working with 𝐸𝑢𝑍 and (−1)dim 𝑍 𝜒(𝐸𝑢𝑍 ) instead of 𝑇∗
𝑍
𝑋 and 𝑇∗

𝑍
𝑋 · 𝑇∗

𝑋
𝑋

is that the former does not need to involve an embedding.

Definition 2.3. A Z-constructible function 𝛾 on an analytic variety 𝑋 is called CC-effective if
it is of the following form

𝛾 =
∑︁
𝑖∈𝐼
(−1)dim 𝑍𝑖𝑛𝑖𝐸𝑢𝑍𝑖 , (4)

where 𝑍𝑖 are irreducible subvarieties of 𝑋 , 𝑛𝑖 ∈ Z>0 and the sum is locally finite.

When 𝑋 is smooth, 𝛾 is CC-effective if and only if 𝐶𝐶 (𝛾) is an effective cycle in 𝑇∗𝑋 .

Lemma 2.4. A Z-constructible function 𝛾 on an analytic variety 𝑋 is CC-effective if and only if
for any 𝑥 ∈ 𝑋 and a small open neighborhood𝑈𝑥 ⊂ 𝑋 of 𝑋 , the restriction 𝛾 |𝑈𝑥

is CC-effective.

Proof. Since 𝐸𝑢𝑍 form a basis of 𝐹 (𝑋), for any constructible function 𝛾 there is a unique
expression (4) with 𝑛𝑖 ∈ Z. Since the local Euler obstruction function is a local invariant,
𝐸𝑢𝑍 |𝑈𝑥=𝐸𝑢𝑍𝑖∩𝑈𝑥

. Hence,

𝛾 |𝑈𝑥
=

∑︁
𝑖∈𝐼, 𝑍𝑖∩𝑈𝑥≠0

(−1)dim 𝑍𝑖𝑛𝑖𝐸𝑢𝑍𝑖∩𝑈𝑥
,
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which is also the unique expression of 𝛾 |𝑈𝑥
in terms of local Euler obstruction functions.

Therefore, 𝛾 is CC-effective if and only if all 𝛾 |𝑈𝑥
are CC-effective. □

The following proposition is proved in the algebraic setting in [AMSS22, Proposition 7.2
(2)]. Nevertheless, the argument also applies to the analytic setting.

Proposition 2.5 (Aluffi-Mihalcea-Schürmann-Su). Let 𝑝 : 𝑍′ → 𝑍 be a finite morphism of
irreducible analytic varieties. Then 𝑝∗((−1)dim 𝑍 ′𝐸𝑢𝑍 ′) is CC-effective. More generally, if 𝛾
is a CC-effective constructible function on 𝑍′, then 𝑝∗(𝛾) is also CC-effective.

2.3. A proper pushforward formula. Given a constructible function 𝛾 on a complex manifold
𝑋 , we have considered 𝐶𝐶 (𝛾) as an analytic dim(𝑋)-cycle in 𝑇∗𝑋 . To study the functorial
properties of the characteristic cycles, we also need to consider them as Borel-Moore homology
classes in an appropriate subspace of 𝑇∗𝑋 .

Assume 𝛾 is constructible with respect to a Whitney stratification 𝒮 of 𝑋 . We define the
conormal space of 𝒮 to be

𝑇∗
𝒮
𝑋 =

⋃
𝑆∈𝒮

𝑇∗
𝑆
𝑋,

where 𝑆 is the closure of the stratum 𝑆 in 𝑋 . Then 𝑇∗
𝒮
𝑋 is a locally finite union of conic

Lagrangian subvarieties. The analytic cycle 𝐶𝐶 (𝛾) is supported in 𝑇∗
𝒮
𝑋 , and it represents a

class in 𝐻𝐵𝑀
2 dim 𝑋

(𝑇∗
𝒮
𝑋,Z). For the rest of this section, we identify a characteristic cycle as the

Borel-Moore homology class it represents.
Let 𝑓 : 𝑋 → 𝑌 be a proper holomorphic map between complex manifolds. Let 𝛾 be a

constructible function on 𝑋 . We review a formula to compute 𝐶𝐶 ( 𝑓∗(𝛾)).
By the theorem in [GM88, Part I, Section 1.7], there exist Whitney stratifications 𝒮 and 𝒮

′

of 𝑋 and 𝑌 respectively, satisfying
(1) 𝛾 is constructible with respect to 𝒮, and
(2) for any stratum 𝑆 ∈ 𝒮, there exists a stratum 𝑆′ ∈ 𝒮

′ such that 𝑓 induces a submersion
𝑆 → 𝑆′.

The map 𝑓 induces

𝑇∗𝑋
𝑢1←− 𝑓 ∗𝑇∗𝑌 𝑢2−→ 𝑇∗𝑌 and 𝑇∗

𝒮
𝑋

𝑢1←− 𝑢−1
1 𝑇
∗
𝒮
𝑋

𝑢2−→ 𝑇∗
𝒮′𝑌 .

Theorem 2.6 ([Sab85, Théorème 2.2], see also [MS22, Proposition10.3.46]). Under the above
notations,

𝐶𝐶 ( 𝑓∗(𝛾)) = 𝑢2∗𝑢
∗
1(𝐶𝐶 (𝛾)),

where 𝐶𝐶 (𝛾) ∈ 𝐻𝐵𝑀
2 dim 𝑋

(𝑇∗
𝒮
𝑋,Z), 𝑢∗1(𝐶𝐶 (𝛾)) ∈ 𝐻

𝐵𝑀
2 dim𝑌 (𝑢

−1
1 𝑇
∗
𝒮
𝑋,Z), and 𝑢2∗𝑢∗1(𝐶𝐶 (𝛾)) ∈

𝐻𝐵𝑀
2 dim𝑌 (𝑇

∗
𝒮′𝑌,Z).

Here, 𝑢2∗ is the proper pushforward of Borel-Moore homology, and 𝑢∗1 is defined via Poincaré
duality as the pullback of local cohomology (see [MS22, Page 734] for more details).
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2.4. Multivalued one-forms.
Definition 2.7 (Mutivalued one-form). Let 𝑋 be a complex manifold and let 𝐸 be a holomorphic
vector bundle on 𝑋 . A multivalued section 𝜂 on 𝑋 is a formal sum

∑𝑚
𝑖=1 𝑛𝑖Γ𝑖, where each

𝑛𝑖 ∈ Z>0 and each Γ𝑖 is an irreducible closed subvariety of 𝐸 such that the natural projection
Γ𝑖 → 𝑋 is a finite surjective morphism. Such multisection 𝜂 is called 𝑑-valued for 𝑑 =∑𝑚
𝑖=1 𝑛𝑖 deg[Γ𝑖 : 𝑋]. We say that 𝜂 is reduced if all Γ𝑖 are distinct, and 𝜂 is irreducible if 𝑚 = 1

and 𝑛1 = 1. We say that 𝜂 is trivial if 𝑚 = 1 and Γ1 is the zero section of 𝐸 → 𝑋 . Multivalued
sections of 𝑇∗𝑋 will be called mutivalued (holomorphic) one-forms.

Let 𝜂 be a mutivalued one-form on a complex manifold 𝑋 . We sometimes denote by Γ𝜂
instead of 𝜂 to emphasize it is an analytic cycle in 𝑇∗𝑋 . By definition, there exists a largest
Zariski open subset 𝑋◦ ⊂ 𝑋 such that Γ𝜂 ∩ 𝑇∗𝑋◦ → 𝑋◦ is étale. We call 𝑋◦ to be the
unbranching locus of 𝜂 and the complement 𝑋 \ 𝑋◦ the branching locus. In this case, for any
𝑥 ∈ 𝑋◦, there exist an open neighborhood of𝑈 of 𝑥 and holomorphic one-forms 𝜂1, . . . , 𝜂𝑚 on
𝑈 such that 𝜂 |𝑈 is equal to the union of 𝜂1, . . . , 𝜂𝑚. Therefore, we say that 𝜂 is closed if for
any point 𝑥 ∈ 𝑋◦, each of the above 𝜂𝑖 is a closed one-form.

Remark 2.8. Let𝑌 be a locally closed complex submanifold of 𝑋 . Given any multivalued one-
form 𝜂 of 𝑋 , using the pullback map 𝑇∗𝑋 |𝑌 → 𝑇∗𝑌 we can define the restriction multivalued
one-form 𝜂 |𝑌 . Clearly, when 𝜂 is closed, so is 𝜂 |𝑌 .

Lemma 2.9. Let 𝑋 be a projective manifold. Every multivalued one-form 𝜂 on 𝑋 is closed.

Proof. Without loss of generality, we can assume that 𝜂 is irreducible. Since 𝑋 is projective
and the natural map Γ𝜂 → 𝑋 is finite, Γ𝜂 is a projective variety. Let 𝑌 → Γ𝜂 be a resolution
of singularity, which is an isomorphism over the smooth locus of Γ𝜂. Let 𝜃 be the tautological
holomorphic one form on 𝑇∗𝑋 , and let 𝜃𝑌 be the pullback of 𝜃 via the composition 𝑌 →
Γ𝜂 → 𝑇∗𝑋 . Since 𝑌 is a projective manifold, by Hodge theory 𝜃𝑌 must be closed. Over the
unbranching locus of 𝜂, the composition 𝑌 → Γ𝜂 → 𝑋 is étale, and the pushforward of 𝜃𝑌 to
𝑋 is equal to 𝜂. Thus, 𝜂 is closed. □

By the work of [Eys04] and [CDY22], we can construct non-trivial multivalued one-forms
from unbounded representations 𝜋1(𝑋) → GL(𝑟, 𝐾) where 𝐾 is a non-archimedean local
field.

Proposition 2.10. Let 𝑋 be a smooth projective variety and let 𝜌 : 𝜋1(𝑋) → GL(𝑟, 𝐾) be a
reductive representation where 𝐾 is a non-archimedean local field. Then there exists a proper
surjective morphism 𝑠𝜌 : 𝑋 → 𝑆𝜌 to a normal projective variety with connected fibers and
a closed multivalued one-form 𝜂𝜌 such that for any irreducible closed subvariety 𝑍 ⊂ 𝑋 , the
following properties are equivalent:
(1) 𝜌(Im[𝜋1(𝑍norm) → 𝜋1(𝑋)]) is bounded;
(2) 𝜌(Im[𝜋1(𝑍) → 𝜋1(𝑋)]) is bounded;
(3) 𝑠𝜌 (𝑍) is a point;
(4) the restriction 𝜂𝜌 |𝑍reg is trivial, where 𝑍reg is the smooth locus of 𝑍 .
In particular, if 𝜌(𝜋1(𝑋)) is unbounded, then 𝜂𝜌 is non-trivial.

We will call the above map 𝑠𝜌 the (Katzarkov-Eyssidieux) reduction map for 𝜌. The
construction of the mutivalued holomorphic one-form 𝜂𝜌 associated with 𝜌 can be found in
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[CDY22, Step 2 in the proof of Theorem H]. The closedness of 𝜂𝜌 follows from Lemma 2.9.
The equivalence of Item 1 and Item 3 is proved by Katzarkov [Kat97] and Eyssidieux [Eys04].
The equivalence of the first three items can be found in [CDY22, Theorem H]. Hence we only
need to prove their equivalence to Item 4.

Proof of the equivalence of Items 3 and 4. To simplify the notation, we write 𝜂 instead of 𝜂𝜌.
By [CDY22, Definition 5.11], we can find a finite Galois cover 𝑓 : 𝑌 → 𝑋 of Galois group
𝐺 (so-called spectral covering) from a normal projective variety such that 𝑓 is étale outside
the branching locus of Γ𝜂 → 𝑋 , and 𝑓 ∗𝜂 becomes single-valued, i.e. there exist sections
{𝜔1, . . . , 𝜔𝑚} ⊂ 𝐻0(𝑌, 𝑓 ∗Ω1

𝑋
) such that 𝑓 ∗𝜂 = {𝜔1, . . . , 𝜔𝑚}. Let 𝑎 : 𝑌 → 𝐴 be the partial

Albanese map associated with {𝜔1, . . . , 𝜔𝑚} (cf. [CDY22, Definition 5.19]), where 𝐴 is an
abelian variety. By [CDY22, Claim 5.15], {𝜔1, . . . , 𝜔𝑚} is invariant under 𝐺. Moreover, by
[CDY22, Step 4 in the proof of Theorem H], 𝐺 acts on 𝐴 such that 𝑎 is 𝐺-equivariant. Then
by [CDY22, Proof of Theorem H], 𝑠𝜌 is the Stein factorization of the quotient map 𝑋 → 𝐴/𝐺,
as in the commutative diagram,

𝑌 𝐴

𝑋 𝑆𝜌 𝐴/𝐺.

𝑓

𝑎

𝜋

𝑠𝜌

(5)

Let 𝑍′ be a connected component of 𝑓 −1(𝑍). Then 𝑍′ and 𝑍 have the same image in 𝐴/𝐺.
Since 𝑠𝜌 is the Stein factorization of 𝑋 → 𝐴/𝐺,

𝑎(𝑍′) is a point⇔ 𝜋 ◦ 𝑎(𝑍′) is a point⇔ 𝑠𝜌 (𝑍) is a point.

By [CDY22, Lemma 1.1], 𝑎(𝑍′) is a point if and only if 𝜔𝑖 |𝑍 ′reg = 0 for each 𝑖.
Clearly, 𝜔𝑖 |𝑍 ′reg = 0 for each 𝑖 if and only if 𝜂 |𝑍reg is trivial. Thus, the equivalence between

Items 3 and 4 follows. □

2.5. A factorization map. In this subsection, we will review some constructions in the proof
of the reductive Shafarevich conjecture in [DYK23]. We first apply Proposition 2.10 to
construct a fibration which is essential in our proof. This construction allows us to factorize
non-rigid representations into those underlying C-VHS with discrete monodromy.

Definition 2.11 (Factorization map). Let 𝑋 be a smooth projective variety. We fix a positive
integer 𝑟 > 0. We define a factorization map 𝑠fac,𝑟 : 𝑋 → 𝑆fac,𝑟 to be the simultaneous Stein
factorization of the Katzarkov-Eyssidieux reductions {𝑠𝜏 : 𝑋 → 𝑆𝜏}𝜏, where 𝜏 : 𝜋1(𝑋) →
GL(𝑟, 𝐾) ranges over all semisimple representations with 𝐾 a non-archimedean local field
of characteristic 0. We refer the readers to [DYK23, Lemma 1.28] and [Car60, Lemma
on page 7] for the precise definition of the simultaneous Stein factorization. In particular,
𝑠fac,𝑟 : 𝑋 → 𝑆fac,𝑟 is a proper morphism to a normal projective variety with connected fibers
such that
(1) all the above maps 𝑠𝜏 factor through 𝑠fac,𝑟 ;
(2) for any closed subvariety 𝑍 of 𝑋 , 𝑠𝜏 (𝑍) is a point for all the above 𝑠𝜏 if and only if 𝑠fac,𝑟 (𝑍)

is a point.
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2.6. Shafarevich morphism. We will recall the definition of the Shafarevich morphism of a
representation of the fundamental group of a projective variety.
Definition 2.12 (Shafarevich morphism). Let 𝑋 be a projective manifold.
(i) Let 𝐻 be a normal subgroup of 𝜋1(𝑋). The Shafarevich morphism of the pair (𝑋, 𝐻) is

a holomorphic map to a normal projective variety sh𝐻 : 𝑋 → Sh𝐻 (𝑋) with connected
fibers such that for any subvariety 𝑍 of 𝑋 , Im[𝜋1(𝑍norm) → 𝜋1(𝑋)/𝐻] is finite if and
only if sh𝐻 (𝑍) is a point.

(ii) The Shafarevich morphism of a linear presentations of 𝜚 : 𝜋1(𝑋) → GL(𝑟, 𝐾), denoted
by sh𝜚 : 𝑋 → Sh𝜚 (𝑋), is the Shafarevich morphism of the pair (𝑋, ker 𝜚).

(iii) Let 𝑀 be a subset of the moduli space of representations 𝑀B(𝜋1(𝑋),GL𝑟) (C). The
reductive Shafarevich morphism of𝑀 , denoted by sh𝑀 : 𝑋 → Sh𝑀 (𝑋), is the Shafarevich
morphism of the pair (𝑋, 𝐻), where 𝐻 is the intersection of kernels of all semisimple
representations 𝜚 : 𝜋1(𝑋) → GL(𝑟,C) with [𝜚] ∈ 𝑀 .

The Shafarevich morphism is unique if it exists. The existence of sh𝑀 for various choices of
𝑀 is proved in [Eys04, EKPR12, DYK23, DY24]. Note that for if 𝜚 : 𝜋1(𝑋) → GL(𝑟, 𝐾) is
a large representation, then the Shafarevich morphism sh𝜚 : 𝑋 → Sh𝜚 (𝑋) of 𝜚 is the identity
map.

2.7. Pure Hodge structures and period maps. In this subsection we briefly review the
definitions of C-Hodge structures, pure period domains and period maps. We refer the readers
to [CMSP17, SS22] for more details.

A polarized C-Hodge structure (of weight 𝑚) is a triple (𝑉 = ⊕𝑝+𝑞=𝑚𝑉 𝑝,𝑞, 𝑆), where 𝑉 is a
C-vector space together with a decomposition 𝑉 = ⊕𝑝+𝑞=𝑚𝑉 𝑝,𝑞, and 𝑆 is the polarization that
is a non-degenerate hermitian form on𝑉 such that the above decomposition is orthogonal with
respect ot 𝑆 and (−1)𝑝𝑆 |𝑉 𝑝,𝑞 is positive-definite. If (𝑉, 𝑆) is endowed with a real structure such
that we have the complex conjugate 𝐹 𝑝,𝑞 = 𝐹𝑞,𝑝, then it is called a R-Hodge structure.

The Hodge filtration is defined to be 𝐹 𝑝 := ⊕𝑖≥𝑝𝑉 𝑖,𝑚−𝑖. Fixing 𝑚 and dimC 𝐹 𝑝, the set
of all such filtration 𝐹• is a complex flag manifold, which is denoted by 𝒟

∨. It is a closed
submanifold of a product of Grassmannians, and is thus a projective manifold. The period
domain, denoted by 𝒟, is the subset of all complex polarized Hodge structures are charcterized
by
(a) 𝐹 𝑝 = 𝐹 𝑝 ∩ (𝐹 𝑝+1)⊥ ⊕ 𝐹 𝑝+1.
(b) (−1)𝑝𝑆 is positive definite over 𝐹 𝑝 ∩ (𝐹 𝑝+1)⊥.
It is an open submanifold of 𝒟∨. Since the groups GL(𝑉) and GL(𝑉, 𝑆) act transitively on
𝒟
∨ and 𝒟 respectively, 𝒟∨ and 𝒟 are thus homogeneous spaces. We also use 𝐹• to denote

the C-Hodge structure.
For any Hodge structure 𝐹• ∈ 𝒟

∨, the holomorphic tangent space 𝑇𝐹•𝒟∨ of 𝒟∨ at 𝐹• is
isomorphic to

End(𝑉)/{𝐴 ∈ End(𝑉) | 𝐴(𝐹 𝑝) ⊂ 𝐹 𝑝 for all 𝑝}.
For any 𝐴 ∈ End(𝑉), we denote by [𝐴]𝐹 its image in 𝑇𝐹•𝒟∨. A tangent vector [𝐴]𝐹• in
𝑇𝐹•𝒟

∨ is called horizontal if 𝐴(𝐹 𝑝) ⊂ 𝐹 𝑝−1 for all 𝑝. All horizontal vectors form a vector
subbundle of 𝑇𝒟∨, which we denote by 𝑇 ℎ𝒟∨. A holomorphic map 𝑓 : Ω → 𝒟

∨ from a
complex manifold Ω is called horizontal if 𝑑𝑓 : 𝑇Ω→ 𝑓 ∗𝑇𝒟∨ factors through 𝑓 ∗𝑇 ℎ𝒟∨.
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A C-variation of Hodge structure (C-VHS for short) on a complex manifold 𝑋 is a family
of polarized C-Hodge structures on 𝑋 subject to a Griffiths transversality condition (see e.g.,
[Sim92, SS22] for more details). Given aC-VHS with monodromy representation 𝜚 : 𝜋1(𝑋) →
GL(𝑉, 𝑆), it induces a 𝜚-equivariant horizontal holomorphic map 𝜙 : 𝑋univ → 𝒟, called the
period map. The image 𝜚(𝜋1(𝑋)) is called the monodromy group.

2.8. Mixed Hodge structures and mixed period maps. We recall the definition of R-mixed
Hodge structures of weight length one and their mixed period maps. We refer the readers to
[Pea00, Her99, Car87] for more details.

A graded polarized R-mixed Hodge structure of length 1 is quadruple (𝑉R,𝑊•, 𝐹•, 𝑆𝑖)
consisting of
• A real finite dimensional vector space 𝑉R;
• an increased (weight) filtration {0} = 𝑊−2 ⊂ 𝑊−1 ⊂ 𝑊0 = 𝑉R;
• a decreased (Hodge) filtration 𝐹• of 𝑉 , where 𝑉 := 𝑉R ⊗R C;
• two non-degenerate hermitian form 𝑆−1 and 𝑆0 on the graded quotients Gr𝑊−1𝑉R and Gr𝑊0 𝑉R

of 𝑉R respectively,
such that Gr𝑊𝑚𝑉R carries a pure R-Hodge structure of weight 𝑚 polarized by 𝑆𝑚. Here the
Hodge filtration 𝐹•Gr𝑊𝑚𝑉 is given by

𝐹 𝑝Gr𝑊𝑚𝑉 :=
𝐹 𝑝 ∩𝑊𝑚 ⊗ C
𝐹 𝑝 ∩𝑊𝑚−1 ⊗ C

.

We fix (𝑉R,𝑊•, 𝑆𝑖). After fixing dimC 𝐹 𝑝Gr𝑊𝑚𝑉 , the mixed period domain ℳ is the set of
polarized R-mixed Hodge structures on (𝑉R,𝑊•), i.e. the set of decreasing filtrations 𝐹• such
that (𝑉R,𝑊•, 𝐹•, 𝑆𝑖) is a mixed Hodge structure.

Given anR-mixed Hodge structure (𝑉R,𝑊•, 𝐹•, 𝑆𝑖) inℳ, since each (Gr𝑊
𝑘
𝑉R, 𝐹

•Gr𝑊
𝑘
𝑉, 𝑆𝑘 )

is classified by a pure period domain 𝒟𝑘 for 𝑘 = −1, 0, the graded quotient Gr𝑊• 𝑉R of 𝑊• is
then classified by a point of

Gr𝑊ℳ := 𝒟−1 ×𝒟0.

Thus, we have a natural projection 𝜋 : ℳ → Gr𝑊ℳ, which is a holomorphic map between
complex manifolds.

Write 𝑉𝑘,R := Gr𝑊
𝑘
𝑉R. Let GL(𝑉R)𝑊 be the real subgroup of GL(𝑉R) preserving the weight

filtration𝑊•. Then we have a natural homomorphism
𝑞 : GL𝑊 (𝑉R) → GL(𝑉−1,R) × GL(𝑉0,R).

By Section 2.7, the subgroup GL(𝑉𝑘,R, 𝑆𝑘 ) of GL(𝑉𝑘,R) acts on 𝒟𝑘 transitively. Let 𝐺
be the inverse image of GL(𝑉−1,R, 𝑆−1) × GL(𝑉0,R, 𝑆0) under 𝑞, which is a real algebraic
group. Then 𝐺 (R) acts on ℳ and 𝜋 is 𝑞-equivariant. Note that the kernel 𝑈 of 𝐺 →
GL(𝑉−1,R, 𝑆−1) × GL(𝑉0,R, 𝑆0) is a commutative real algebraic group isomorphic to a real
vector space.

In the same vein as Section 2.7, we can define the horizontal bundle 𝑇 ℎ
ℳ

on ℳ, which is a
holomorphic subbundle of the tangent bundle of ℳ.

An R-variation of mixed Hodge structure (R-VMHS for short) on a complex manifold 𝑋 is a
family ofR-mixed Hodge structures subject to certain conditions (see [Pea00] for more details).
In particular, an R-VMHS determines a monodromy representation 𝜚 : 𝜋1(𝑋) → 𝐺 (R) and
a 𝜚-equivariant holomorphic map 𝜙 : 𝑋univ →ℳ such that 𝑓 is horizontal, i.e., 𝑑𝜙 : 𝑇𝑋 →
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𝑓 ∗𝑇 ℎℳ, and it satisfies the property that, 𝜋 ◦ 𝜙 : 𝑋univ → Gr𝑊ℳ is a 𝑞 ◦ 𝜚-equivariant
horizontal holomorphic map, which defines an R-VHS. Such 𝜙 is called the mixed period map
of this R-VMHS and 𝜚(𝜋1(𝑋)) is called the monodromy group.

We recollect the following standard fact about the mixed period domain (cf. [Car87, p.
218]).

Lemma 2.13. Let ℳ be as above. Then 𝜋 : ℳ → Gr𝑊ℳ is a holomorphic vector bun-
dle with the fiber at a point 𝑃 ∈ Gr𝑊ℳ being canonically isomorphic to Hom(𝑉0, 𝑉−1) ⊗
C/𝐹0Hom(𝑉0, 𝑉−1) ⊗C. Here we denote by𝑉𝑖 := Gr𝑊𝑖 𝑉 , and Hom(𝑉0, 𝑉−1) is endowed with a
natural Hodge structure of weight −1 induced from 𝑃. For the kernel𝑈 of the homomorphism
𝐺 → GL(𝑉−1,R, 𝑆−1) × GL(𝑉0,R, 𝑆0),𝑈 (C) acts on the fibers of 𝜋 as a translation. □

3. Nearby cycle functor of a multivalued one-form

In the first part of this section, we define a vanishing cycle functor of a multivalued one-form
and prove some useful properties of this functor. In the second part, we prove Theorem 1.5 in
the case when 𝐾 is a field of positive characteristic.

3.1. Definition of Φ𝜂. Given an irreducible multivalued one-form 𝜂 on a complex manifold
𝑋 and an irreducible conic Lagrangian cycle Λ in 𝑇∗𝑋 , we define two irreducible cycles in
𝑇∗𝑋 × C: Λ⋄ = Λ × C and Γ⋄𝜂 is the cycle such that its restriction to 𝑇∗𝑋 × {𝑠} is equal to Γ𝑠𝜂.
Since Γ⋄𝜂 is a multisection of 𝑇∗𝑋 ×C as a vector bundle over 𝑋 ×C, it follows that Λ⋄×𝑋×C Γ⋄𝜂
is an (𝑚 + 1)-cycle in (𝑇∗𝑋 × C) ×𝑋×C (𝑇∗𝑋 × C), where 𝑚 = dim 𝑋 . Denote the fiberwise
addition map by

𝔖 : (𝑇∗𝑋 × C) ×𝑋×C (𝑇∗𝑋 × C) → 𝑇∗𝑋 × C.
Since the natural projection Γ⋄𝜂 → 𝑋 × C is a finite morphism, so is the restriction map

𝔖 : (𝑇∗𝑋 × C) ×𝑋×C Γ𝜂 → 𝑇∗𝑋 × C.
Thus, the restriction of 𝔖 to the support of Λ⋄ ×𝑋×C Γ⋄𝜂 is also a finite morphism. The
pushforward 𝔖∗(Λ⋄ ×𝑋×C Γ⋄𝑠𝜂) is a (𝑑 + 1)-cycle in 𝑇∗𝑋 × C, which we also denote by Λ⋄𝜂.

Lemma 3.1. As a subspace of 𝑇∗𝑋 × P1, Λ⋄𝜂 is locally closed with respect to the analytic
Zariski topology.

Proof. If we consider 𝑇∗𝑋 × C as a vector bundle over 𝑋 , then it follows from definition that
Λ⋄𝜂 is a conic cycle. Consider the fiberwise projective compactification

𝑇∗𝑋 × C ⊂ P
(
(𝑇∗𝑋 × C) ⊕ C𝑋

)
.

Since Λ⋄𝜂 is conic, it is locally closed in P
(
(𝑇∗𝑋 ×C) ⊕C𝑋

)
with respect to the analytic Zariski

topology.
Now, consider the fiberwise projective compactifications

𝑇∗𝑋 ⊂ P(𝑇∗𝑋 ⊕ C𝑋), and 𝑋 × C = C𝑋 ⊂ P(C𝑋 ⊕ C𝑋) = 𝑋 × P1.

As partial compactifications of 𝑇∗𝑋 × C, P
(
(𝑇∗𝑋 × C) ⊕ C𝑋

)
and P(𝑇∗𝑋 ⊕ C𝑋) ×𝑋 (𝑋 × P1)

are birational to each other. In fact, one can easily construct blowup and blowdown maps
connecting them. Since Λ⋄𝜂 is locally closed in the first partial compactification, it is also a
locally closed in the second. □
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Taking closure in 𝑇∗𝑋 × P1 and keeping the multiplicities, we have Λ⋄𝜂, a (𝑑 + 1) cycle in
𝑇∗𝑋 × P1. Let Φ𝜂Λ be the restriction of Λ⋄𝜂 to 𝑇∗𝑋 × {∞}.

Remark 3.2. The (𝑚 + 1)-cycle Λ⋄ ×𝑋×C Γ⋄𝜂 may have higher multiplicities. In fact, it is
defined as the scheme-theoretic intersection of Λ⋄ × Γ⋄𝜂 and the preimage of the diagonal of
(𝑋 × C) × (𝑋 × C) under the map (𝑇∗𝑋 × C) × (𝑇∗𝑋 × C) → (𝑋 × C) × (𝑋 × C). It is
straightforward to check that the intersection has expected dimension, but may have higher
multiplicities (see [Ful98, Section 7.1]).

Remark 3.3. When 𝜂 is a single-valued one-form, Γ𝜂 is a section of 𝑇∗𝑋 , and Φ𝜂Λ is simply
MacPherson’s description of the deformation to normal cone (see [Ful98, Remark 5.1.1]).

Lemma 3.4. Let 𝑍 be a closed complex submanifold of 𝑋 , and denote 𝑇∗
𝑍
𝑋 by Λ. Let 𝜂 be a

multivalued one-form on 𝑋 , and let 𝜂 |𝑍 be the restriction of 𝜂 to 𝑍 as in Remark 2.8. Then

Φ𝜂 (Λ) = 𝑢∗
(
Φ𝜂 |𝑍𝑇

∗
𝑍𝑍

)
(6)

where 𝑢 : 𝑇∗𝑋 |𝑍 → 𝑇∗𝑍 is the pullback map and 𝑢∗ is the flat pullback on analytic cycles.

Proof. Let 𝑢0 : 𝑇∗𝑋 |𝑍 × C → 𝑇∗𝑍 × C and 𝑢1 : 𝑇∗𝑋 |𝑍 × P1 → 𝑇∗𝑍 × P1 be the product of
𝑢 and the identity maps on C and P1 respectively. Then it follows from definition that Λ⋄𝜂 is
contained in 𝑇∗𝑋 |𝑍 × P1, and as analytic cycles on 𝑇∗𝑋 |𝑍 ×C and 𝑇∗𝑋 |𝑍 × P1 respectively, we
have

𝑢∗0

(
Γ⋄
𝜂 |𝑍

)
= Λ⋄𝜂 and 𝑢∗1

(
Γ⋄
𝜂 |𝑍

)
= Λ⋄𝜂 . (7)

By the flatness of 𝑢1 and the definition of Φ𝜂, we have

𝑢∗1

(
Γ⋄
𝜂 |𝑍 ∩ 𝑇

∗𝑍 × {∞}
)
= Λ⋄𝜂 ∩ 𝑇∗𝑋 |𝑍 × {∞} = Φ𝜂 (Λ).

On the other hand, if we let Λ𝑍 = 𝑇∗
𝑍
𝑍 , then by definition

Φ𝜂 |𝑍 (Λ𝑍 ) = Λ⋄
𝑍,𝜂 |𝑍 ∩ 𝑇

∗𝑍 × {∞} and Λ⋄
𝑍,𝜂 |𝑍 = Γ⋄

𝜂 |𝑍 .

Thus, the desired equality (6) follows. □

Proposition 3.5. Given an irreducible conic Lagrangian cycle Λ = 𝑇∗
𝑍
𝑋 , Φ𝜂Λ is an effective

conic cycle supported in 𝑇∗𝑋 |𝑍 . Moreover, if 𝜂 is closed, then Φ𝜂Λ is also Lagrangian.

Proof. By definition, Φ𝜂Λ is effective. Since the C∗-action on 𝑇∗𝑋 × C induced by the vector
bundle structure (as in the proof of Lemma 3.1) extends to 𝑇∗𝑋 × P1, the C∗-action on Λ⋄𝜂
extends to the closure Λ⋄𝜂. Thus, the restriction Λ⋄𝜂 to 𝑇∗𝑋 × {∞} is a conic cycle.

Since Φ𝜂Λ is the limit of Λ⋄𝜂 ∩ (𝑇∗𝑋 × {𝑠}) as 𝑠 approaches to ∞, and since the limit of
Lagrangian cycles is also Lagrangian, it suffices to show that Λ𝜂,𝑠 B Λ⋄𝜂 ∩ (𝑇∗𝑋 × {𝑠}) is
Lagrangian for any 𝑠 ∈ C. Since Λ⋄𝜂 is irreducible and of dimension 𝑚 + 1, Λ𝜂,𝑠 is pure of
dimension 𝑚. Here, we recall that 𝑚 is the dimension of 𝑋 .

By definition, identifying 𝑇∗𝑋 × {𝑠} with 𝑇∗𝑋 , we have (not counting multiplicity)
Λ𝜂,𝑠 =

{
(𝑥, 𝜁) | 𝜁 ∈ Λ|𝑥 + 𝑠 · Γ𝜂 |𝑥

}
,

where
Λ|𝑥 + 𝑠 · Γ𝜂 |𝑥 =

{
𝛼 + 𝑠𝛽 | 𝛼 ∈ Λ ∩ 𝑇∗𝑥 𝑋 and 𝛽 ∈ Γ𝜂 ∩ 𝑇∗𝑥 𝑋

}
.
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Since the projection Γ𝜂 → 𝑋 is a finite morphism, over every point of 𝑍 , the fibers of the two
projections Λ = 𝑇∗

𝑍
𝑋 → 𝑍 and Λ𝜂,𝑠 → 𝑍 have the same dimension. Since Λ is irreducible

and dimΛ = dimΛ𝜂,𝑠 = 𝑚, by counting dimensions, the restriction of Λ𝜂,𝑠 → 𝑍 to every
irreducible component of Λ𝜂,𝑠 is dominant. Thus, it suffices to show that Λ𝜂,𝑠 is Lagrangian
over a dense open subset of 𝑍 . By the first equation in (7), we have

Λ𝜂,𝑠 |𝑍reg = 𝑢
∗ (Γ𝑠𝜂 |𝑍reg

)
where 𝑢 : 𝑇∗𝑋 |𝑍reg → 𝑇∗𝑍reg is the pullback map. Since locally, we can realize 𝑋 as the
product of 𝑍reg and another complex manifold, 𝑢∗(Γ𝑠𝜂 |𝑍reg ) is Lagrangian in 𝑇∗𝑋 if and only
if Γ𝑠𝜂 |𝑍reg is Lagrangian in 𝑇∗𝑍reg. Locally over the unbranching locus of 𝑠𝜂 |𝑍reg , Γ𝑠𝜂 |𝑍reg is a
union of closed holomorphic one-forms. It is a well-known fact that the image of a closed
one-form in the cotangent bundle is a Lagrangian submanifold. Since 𝜂 is a closed multivalued
one-form, so is 𝑠𝜂 |𝑍reg . Hence, over the unbraching locus, Γ𝑠𝜂 |𝑍reg is a Lagrangian submanifold
of 𝑇∗𝑍reg, and we have finished the proof. □

The following Proposition is analogous to the fact that the vanishing cycle of 𝑓 is supported
on the critical locus of 𝑓 .

Proposition 3.6. Let 𝑋 be a complex manifold and let 𝑍 be a compact irreducible analytic
subvariety of 𝑋 . Denote by Λ = 𝑇∗

𝑍
𝑋 . If 𝜂 is a 𝑑-valued closed one-form on 𝑋 , then

Φ𝜂 (Λ) = 𝑛0Λ +
∑︁

1≤𝑖≤𝑚
𝑛𝑖 𝑇

∗
𝑍𝑖
𝑋 (8)

where 𝑛0 is the multiplicity of the zero form in 𝜂 |𝑍reg and all 𝑍𝑖 are proper closed subvarieties
of 𝑍 . In particular, if 𝜂 |𝑍reg is non-trivial, then 𝑛0 < 𝑑.

Proof. It follows from definition that Φ𝜂 ⊂ 𝑇∗𝑋 |𝑍 . Thus, by Proposition 3.5, we have the
presentation (8) with 𝑛𝑖 ≥ 0 for all 𝑖. The only remaining statement is that 𝑛0 is equal to the
multiplicity of the zero form in 𝜂 |𝑍reg . By Lemma 3.4, it suffices to prove the statement in the
case when 𝑍 = 𝑋 and Λ = 𝑇∗

𝑋
𝑋 . Restricting to a small ball in the unbranching locus of 𝜂, we

can also assume that 𝜂 is the union of 𝑑 single-valued one-forms 𝜂 𝑗 , 1 ≤ 𝑗 ≤ 𝑑. In this case,

Φ𝜂 (𝑇∗𝑋𝑋) =
∑︁

1≤ 𝑗≤𝑑
Φ𝜂𝑖 (𝑇∗𝑋𝑋).

Obviously, if 𝜂 𝑗 = 0, then Φ𝜂 𝑗 (𝑇∗𝑋𝑋) = 𝑇∗𝑋𝑋 . Otherwise, Φ𝜂 𝑗 (𝑇∗𝑋𝑋) is supported on a proper
closed subset of 𝑋 . Thus, 𝑛0 is equal to the number of 𝜂 𝑗 which are zero one-forms. □

Remark 3.7. Assume that 𝑥 ∈ 𝑍reg is in the unbranching locus of 𝜂. If near 𝑥, some branch of
𝜂 |𝑍reg has nonempty degenerating locus, then it follows from the definition of Φ𝜂 that 𝑛𝑖 > 0
for some 0 ≤ 𝑖 ≤ 𝑚. Furthermore, if the degenerating locus has dimension strictly less than
dim 𝑍 , then 𝑛𝑖 > 0 for some 1 ≤ 𝑖 ≤ 𝑚.

We have proved that Φ𝜂 maps conic Lagrangian cycles to conic Lagrangian cycles. Hence
it induces a group homomorphism Φ𝜂 : 𝐿 (𝑋) → 𝐿 (𝑋), which we call the vanishing cycle
functor of 𝜂. The following proposition justifies this name.
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Proposition 3.8 (Massey). If 𝑓 is a holomorphic function on a complex manifold 𝑋 , then Φ𝑑𝑓

is the total vanishing cycle functor. In other words, given a conic Lagrangian cycle Λ in 𝑇∗𝑋 ,

Φ𝑑𝑓 (Λ) =
∑︁
𝑡∈C

Φ 𝑓−𝑡 (Λ) (9)

where Φ 𝑓−𝑡 is the standard vanishing cycle functor of the holomorphic function 𝑓 − 𝑡. Note
that the sum on the right-hand side is a locally finite sum, because restricting to a small ball
in 𝑋 , there are only finitely many 𝑡 such that Φ 𝑓−𝑡 (Λ) ≠ 0.

Proof. In this case, Γ𝜂 is a section of 𝑇∗𝑋 . Then Φ𝜂Λ is the deformation to the normal cone
(Remark 3.3), the equation (9) is equivalent to [Mas00, Theorem 2.10]. □

3.2. Some properties of Φ𝜂.

Proposition 3.9. Suppose 𝜂 is a 𝑑-valued closed one-form. For any Λ ∈ 𝐿 (𝑋), we have

𝑑 Λ · 𝑇∗𝑋𝑋 = Φ𝜂 (Λ) · 𝑇∗𝑋𝑋

where · denotes the intersection number in 𝑇∗𝑋 .

Proof. Recall thatΦ𝜂Λ is defined to be the restriction ofΛ⋄𝜂 to𝑇∗𝑋×{∞}. Since the intersection
number is invariant under rational equivalence,

Φ𝜂 (Λ) · 𝑇∗𝑋𝑋 =
(
Λ⋄𝜂 ∩ (𝑇∗𝑋 × {0})

)
· 𝑇∗𝑋𝑋.

By definition, we have Λ⋄𝜂 ∩ (𝑇∗𝑋 × {0}) = 𝑑Λ as 𝑛-cycles on 𝑇∗𝑋 . Therefore, the desired
equality follows. □

Corollary 3.10. Let 𝑋 be a complex manifold and 𝑍 be a compact irreducible subvariety of
𝑋 . If there exists a closed multivalued one-form 𝜂 on 𝑋 whose restriction to 𝑍 is non-trivial,
then there exist proper closed subvarieties 𝑍𝑖 of 𝑍 and 𝜆𝑖 ∈ Q≥0 such that

𝑇∗𝑍𝑋 · 𝑇∗𝑋𝑋 =
∑︁

1≤𝑖≤𝑚
𝜆𝑖 𝑇

∗
𝑍𝑖
𝑋 · 𝑇∗𝑋𝑋.

Proof. By Propositions 3.6 and 3.9, we have

𝑑𝑇∗𝑍𝑋 · 𝑇∗𝑋𝑋 = Φ𝜂 (Λ) · 𝑇∗𝑋𝑋 =

(
𝑛0𝑇

∗
𝑍𝑋 +

∑︁
1≤𝑖≤𝑚

𝑛𝑖 𝑇
∗
𝑍𝑖
𝑋

)
· 𝑇∗𝑋𝑋.

By the assumption that the restriction of 𝜂 to 𝑍reg is non-trivial, 𝑛0 < 𝑑, and we have

𝑇∗𝑍 · 𝑇∗𝑋𝑋 =
∑︁

1≤𝑖≤𝑚

𝑛𝑖

𝑑 − 𝑛0
𝑇∗𝑍𝑖𝑋 · 𝑇

∗
𝑋𝑋. □

The classical vanishing cycle functor is defined for constructible complexes. So we end the
section with the following question.

Question 3.11. Let 𝜂 be a multi-valued closed one-form on a complex manifold 𝑋 . Is there a
natural lifting of Φ𝜂 to a functor of constructible complexes Φ𝜂 : 𝐷𝑏

𝑐 (𝑋,C) → 𝐷𝑏
𝑐 (𝑋,C)?
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3.3. Proof of Theorem 1.5 in the case when char(𝐾) > 0.

Proposition 3.12. Let 𝑋 be a smooth projective variety and let 𝜌 : 𝜋1(𝑋) → GL(𝑟, 𝐾) be a
linear representation where 𝐾 is a field of characteristic 𝑝 > 0. If 𝜌 is large, then there exists
a closed mutivalued one-form 𝜂 on 𝑋 such that for any positive-dimensional closed subvariety
𝑍 of 𝑋 , the restriction of 𝜂 to 𝑍 |reg is non-trivial.

Proof. By [DY24, Theorem 2.7 & Corollary 2.10], there exists a semisimple representation
𝜏 : 𝜋1(𝑋) → GL(𝑁, 𝐿) where 𝐿 is a non-archimedean local field of characteristic 𝑝 such
that the Katzarkov-Eyssidieux reduction map 𝑠𝜏 is the Shafarevich morphism of 𝜌. Since 𝜌 is
large, its Shafarevich morphism is the identity map. Hence 𝑠𝜏 is the identity map. Let 𝜂 be
the associated closed multivalued one-form in Proposition 2.10. By the equivalence of item 3
and item 4 in Proposition 2.10, for any positive dimensional subvariety 𝑍 , the restriction 𝜂 |𝑍reg
is non-trivial. The proposition is proved. □

Proof of Theorem 1.5 assuming char(𝐾) > 0. In this case the axioms of Proposition 3.12 are
satisfied, and hence we have a closed multivalued one-form 𝜂 whose restriction to any positive
dimensional subvariety is non-trivial. Iterating Corollary 3.10, we can express 𝑇∗

𝑍
𝑋 · 𝑇∗

𝑋
𝑋 as

a sum of finitely many 𝜆𝑖𝑇∗𝑍𝑖𝑋 · 𝑇
∗
𝑋
𝑋 , where 𝜆𝑖 > 0 and 𝑍𝑖 is a point. If 𝑍𝑖 is a point, then

𝑇∗
𝑍𝑖
𝑋 · 𝑇∗

𝑋
𝑋 = 1. Thus, 𝑇∗

𝑍
𝑋 · 𝑇∗

𝑋
𝑋 ≥ 0. □

4. Period maps of C-VHS and positivity

4.1. Positivity from the period maps. In this subsection, we prove the following generaliza-
tion of [AW21, Theorem 1.9].

Proposition 4.1. Let 𝑋 be a projective manifold with a representation 𝜎 : 𝜋1(𝑋) → GL(𝑁,C)
such that the associated local system 𝐿𝜎 underlies a C-VHS. Assume that 𝑍 is an irreducible
subvariety of 𝑋 such that
(1) the pullback of 𝜎 to 𝜋1(𝑍norm) is large;
(2) Γ B 𝜎(Im[𝜋1(𝑍norm) → 𝜋1(𝑋)]) is a discrete subgroup of GL(𝑁,C).
Then the intersection number 𝑇∗

𝑍
𝑋 · 𝑇∗

𝑋
𝑋 ≥ 0. Equivalently, (−1)dim 𝑍 𝜒(𝐸𝑢𝑍 ) ≥ 0.

When 𝑍 happens to be normal, the proposition follows immediately from the arguments of
[AW21]. However, some technical arguments are required to deal with the non-normal case.

First, we need to reduce to the case when Γ is torsion free.

Lemma 4.2. Let 𝑋 be a projective manifold, and 𝜋 : 𝑋 → 𝑋 be a finite covering map. For an
irreducible subvariety 𝑍 of 𝑋 , let 𝑍 be a connected component of 𝜋−1(𝑍). Then,

𝑇∗
𝑍
𝑋 · 𝑇∗

𝑋
𝑋 = 𝑑 𝑇∗𝑍𝑋 · 𝑇∗𝑋𝑋

where 𝑑 is the degree of the covering map 𝜋 |
𝑍

: 𝑍 → 𝑍 .

Proof. Since 𝜋 |
𝑍

: 𝑍 → 𝑍 is a covering map of degree 𝑑, the pushforward of 𝐸𝑢
𝑍

under 𝜋 |
𝑍

is equal to 𝑑 · 𝐸𝑢𝑍 . Hence
𝜒
(
𝐸𝑢

𝑍

)
= 𝜒

(
𝜋 |
𝑍∗(𝐸𝑢𝑍 )

)
= 𝑑 · 𝜒(𝐸𝑢𝑍 ).

By (3), the desired equation follows. □
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By [Sel60, Lemma 8], 𝜎(𝜋1(𝑋)) has a torsion-free finite index subgroup. Replacing 𝑋 by
the induced finite cover, without loss of generality, we can assume that 𝜎(𝜋1(𝑋)) is torsion
free. Then as a subgroup, Γ is also torsion free.

By the argument of [AW21], we know that there is a finite period map 𝑍norm → Γ\𝐷. Since
Γ\𝐷 has non-positive holomorphic bisectional curvature in the horizontal directions, we can
deduce the fact that (−1)dim 𝑍 𝜒(𝐸𝑢𝑍norm) ≥ 0. However, this is weaker than the inequality
(−1)dim 𝑍 𝜒(𝐸𝑢𝑍 ) ≥ 0. To achieve the latter inequality, we introduce a new constructible
function 𝛿 on 𝑍norm as follows.

Definition 4.3. Let 𝑍 be an algebraic variety and let 𝑝 : 𝑍norm → 𝑍 be the normalization map.
Given any point 𝑥 ∈ 𝑍norm, we choose a small open neighborhood𝑈𝑥 ⊂ 𝑍norm of 𝑥. The value
of 𝛿 at 𝑥 is defined to be the value of (−1)dim 𝑍𝐸𝑢𝑝(𝑈𝑥) at 𝑝(𝑥).

The function 𝛿 is constructible with respect to a stratification of the map 𝑝 : 𝑍norm → 𝑍 (see
[GM88, Chapter 1, 1.6 and 1.7]).

Example 4.4. Suppose that 𝑍 is a projective curve with two singular points: a cusp 𝑃 and a
node 𝑄. Then the above defined function 𝛿 has value -1 on every point of 𝑍norm except at the
preimage 𝑃′ of 𝑃, where the value is -2. In this case, 𝛿 is not CC-effective on 𝑍norm, because

𝛿 = (−1)dim 𝑍1𝑍norm − 1𝑃′ ,
where 1𝑍norm = 𝐸𝑢𝑍norm , since 𝑍norm is smooth. Such 𝑍 could appear in Proposition 4.1, and in
such case, we will see that the image of 𝑍norm in the period domain Γ\𝐷 must at least have a
cusp singularity at the image of 𝑃′. So the pushforward of 𝛿 in Γ\𝐷 will be CC-effective.

Lemma 4.5. Let 𝑝 : 𝑍norm → 𝑍 and the constructible function 𝛿 be as in Definition 4.3. If
𝑈 ⊂ 𝑍norm is open, then (𝑝 |𝑈)∗(𝛿) = (−1)dim 𝑍𝐸𝑢𝑝(𝑈) . In particular, 𝑝∗(𝛿) = (−1)dim 𝑍𝐸𝑢𝑍

and 𝜒(𝛿) = (−1)dim 𝑍 𝜒(𝐸𝑢𝑍 ).

Proof. The lemma follows from the definition of 𝛿 and the fact that for a reducible analytic
variety, its Euler obstruction function equals to the sum of the Euler obstruction of every
irreducible components. □

Let 𝜋 : 𝑋 → 𝑋 be the covering map induced by ker(𝜎). Let 𝜋𝑍norm : 𝑍norm → 𝑍norm be the
covering map induced by ker[𝜋1(𝑍norm) → 𝜋1(𝑋)

𝜎−→ GL(𝑁,C)]. Then the map 𝑍norm → 𝑋

lifts to a map 𝑍norm → 𝑋 . Let 𝑍 be the image of 𝑍norm in 𝑋 . Then we have the following
commutative diagram:

𝑍norm

𝜋𝑍norm
��

𝑝
// 𝑍

𝜋𝑍

��

𝜄
// 𝑋

𝜋

��

𝑍norm
𝑝
// 𝑍

𝜄
// 𝑋.

It follows from definition that 𝑍norm is a connected component of the fiber product 𝑍norm×𝑋 𝑋 .
Since 𝜄 ◦ 𝑝 : 𝑍norm → 𝑋 is a finite morphism, so are 𝜄 ◦ 𝑝 : 𝑍norm → 𝑋 and 𝑝 : 𝑍norm → 𝑍 (of
analytic varieties).

Remark 4.6. The map 𝜋𝑍 is a covering map over the Zariski open subset of 𝑍 where it is locally
irreducible. For example, if 𝑍 is curve, everywhere smooth except at one nodal singular point,
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then 𝑍 is a covering space of either 𝑍 or 𝑍norm depending on whether the two compositions
𝜋1(𝑍norm) → 𝜋1(𝑋)

𝜎−→ GL(𝑁,C) and 𝜋1(𝑍) → 𝜋1(𝑋)
𝜎−→ GL(𝑁,C) have the same image

or not.

Lemma 4.7. Let 𝛿 = 𝜋∗
𝑍norm
(𝛿). Then 𝑝∗(𝛿) is CC-effective.

Proof. Since 𝜄 is a closed embedding, it suffices to show that (𝜄 ◦ 𝑝)∗(𝛿) is CC-effective. By
definition, near the image of 𝜄 ◦ 𝑝, (𝜄 ◦ 𝑝)∗(𝛿) is equal to 𝜋∗((𝜄 ◦ 𝑝)∗𝛿). Since 𝜋 is a covering
map, it suffices to show that (𝜄 ◦ 𝑝)∗𝛿 is CC-effective. By Lemma 4.5, 𝑝∗𝛿 is CC-effective.
Since 𝜄 is a closed embedding, (𝜄 ◦ 𝑝)∗𝛿 is also CC-effective. □

By the definition of 𝑋 , the pullback of 𝐿𝜎 to 𝑋 becomes a trivial local system. Thus, the
C-VHS structure on 𝐿𝜎 induces a period map

𝜙 : 𝑋 → 𝐷.

Denote the pullback of 𝜙 to 𝑍 by 𝜙𝑍 : 𝑍 → 𝐷. Now, the deck transformation group of the
normal covering map 𝑍norm → 𝑍norm is equal to Γ, and Γ acts on 𝐷 via the monodromy action
of the C-VHS 𝐿𝜎. Thus, Γ acts equivariantly on the composition 𝜙 ◦ 𝑝 : 𝑍norm → 𝐷, and
taking quotient by the Γ-action, we have the commutative diagram

𝑍norm

��

𝑝
// �̃�

𝜙𝑍
// 𝐷

𝜋𝐷

��

𝑍norm
𝜙

// Γ\𝐷.

(10)

Since Γ is torsion free and discrete, we know that Γ\𝐷 is a complex manifold.
Since the pullback of 𝜎 to 𝜋1(𝑍norm) is large, by [AW21, Proof of Theorem 1.9], we have

the following.

Lemma 4.8. The period map 𝜙 : 𝑍norm → Γ\𝐷 is a finite morphism. □

Proposition 4.9. Let 𝛿 be the constructible function as in Definition 4.3. Then the pushforward
𝜙∗(𝛿) is CC-effective.

Proof. The proof will be based on the commutative diagram (10).
Let 𝛿 be the pullback of 𝛿 to the covering space 𝑍norm. Notice that ignoring 𝑍 , (10) is a

Cartesian square. Thus, it suffices to show that (𝜙𝑍 ◦ 𝑝)∗(𝛿) is CC-effective. By Lemma
4.7, 𝑝∗(𝛿) is CC-effective. Since 𝜙𝑍 is a finite morphism, by Proposition 2.5, (𝜙𝑍 ◦ 𝑝)∗(𝛿) is
CC-effective. □

Remark 4.10. The horizontal subbundle 𝑇−1,1𝐷 defined in section 2.7 is preserved by the
Γ-action, and hence descends to a subbundle 𝑇−1,1(Γ\𝐷). A subvariety 𝑌 of Γ\𝐷 is called
horizontal if the image of 𝑇𝑌reg in 𝑇 (Γ\𝐷) |𝑌reg is contained in 𝑇−1,1(Γ\𝐷) |𝑌reg . The image of
a period map is always horizontal. It is proved in [AW21, Corollary 5.4] that the subvariety of
a horizontal variety is also horizontal.

The following proposition was proved using the curvature property of the period domain.
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Proposition 4.11. [AW21, Proposition 6.1] Let𝑌 be a horizontal compact irreducible analytic
subvariety of Γ\𝐷. Then

𝑇∗𝑌 Γ\𝐷 · 𝑇∗Γ\𝐷Γ\𝐷 ≥ 0

as intersection number in 𝑇∗Γ\𝐷. Equivalently, (−1)dim𝑌 𝜒(𝐸𝑢𝑌 ) ≥ 0.

Proof of Proposition 4.1. By Lemma 4.5,

(−1)dim 𝑍 𝜒(𝐸𝑢𝑍 ) = 𝜒(𝛿). (11)

Since 𝜙 : 𝑍norm → Γ\𝐷 is a finite morphism,

𝜒(𝛿) = 𝜒(𝜙∗(𝛿)). (12)

Moreover, the support of 𝜙∗(𝛿) is compact. By Proposition 4.9, we know that

𝜙∗(𝛿) =
∑︁

1≤𝑖≤𝑚
(−1)dim𝑌𝑖𝑛𝑖𝐸𝑢𝑌𝑖 (13)

for irreducible compact subvarieties 𝑌𝑖 of Γ\𝐷 and 𝑛𝑖 > 0. By Remark 4.10, 𝜙(𝑍norm)
is horizontal. Since all 𝑌𝑖 are contained in 𝜙(𝑍norm), they are also horizontal. Thus, by
Proposition 4.11, (−1)dim𝑌𝑖 𝜒(𝐸𝑢𝑌𝑖 ) ≥ 0 for all 𝑖. Therefore, by (13), 𝜒(𝜙∗(𝛿)) ≥ 0. By (11)
and (12), (−1)dim 𝑍 𝜒(𝐸𝑢𝑍 ) ≥ 0. □

4.2. Proof of Theorem 1.5 in the case when 𝐾 = C and 𝜌 is semisimple. Let 𝜌 : 𝜋1(𝑋) →
GL(𝑟,C) be a large and semisimple representation. The proof of the reductive Shafarevich
conjecture as in [DYK23] gives us the desired multivalued one-forms and C-VHS as in the
following proposition.

Proposition 4.12. Let 𝑋 be a projective manifold and let 𝜌 : 𝜋1(𝑋) → GL(𝑟,C) be a large
and semisimple representation. Then there exists a semisimple representation 𝜎 : 𝜋1(𝑋) →
GL(𝑁,C) on 𝑋 underlying a C-VHS, and a closed multivalued one form 𝜂 on 𝑋 such that for
any irreducible subvariety 𝑍 of 𝑋 , one of the following two statements holds.
(1) The restriction of 𝜂 to 𝑍 is non-trivial.
(2) The pullback of 𝜎 to the normalization 𝑍norm of 𝑍 is large and has discrete monodromy.

Proof. Let 𝑠fac,𝑟 : 𝑋 → 𝑆fac,𝑟 be the fibration defined in Definition 2.11. By [DYK23,
Proposition 3.13], there exist a semisimple representation 𝜎 : 𝜋1(𝑋) → GL(𝑁,C) underlying
a C-VHS, such that for any closed subvariety 𝑍 with 𝑠fac,𝑟 (𝑍) being a point, the following
properties hold:
(1) let 𝑝 : 𝑍norm → 𝑍 be the normalization map. Then the image of 𝑝∗𝜎 : 𝜋1(𝑍norm) →

GL(𝑁,C) is a discrete subgroup.
(2) For each semisimple representation 𝜏 : 𝜋1(𝑋) → GL(𝑟,C), 𝑝∗𝜏 is conjugate to a direct

factor of 𝑝∗𝜎 : 𝜋1(𝑍norm) → GL(𝑁,C).
Since 𝜌 is large, 𝑝∗𝜌 : 𝜋1(𝑍norm) → GL(𝑁,C) is also large. Item 2 implies that 𝑝∗𝜎 :
𝜋1(𝑍norm) → GL(𝑁,C) is large.

By [DYK23, Theorem 1.28], there exist semisimple representations {𝜌𝑖 : 𝜋1(𝑋) →
GL(𝑟, 𝐾𝑖)}𝑖=1,...,𝑘 where each𝐾𝑖 is a non-archimedean local field of characteristic zero such that
the Stein factorization of (𝑠𝜌1 , . . . , 𝑠𝜌𝑘 ) : 𝑋 → 𝑆𝜌1×· · ·×𝑆𝜌𝑘 coincides with 𝑠fac,𝑟 : 𝑋 → 𝑆fac,𝑟 .
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Recall in Proposition 2.10, each 𝜌𝑖 gives rise to a multivalued one-form 𝜂𝑖 on 𝑋 such that the
properties in Proposition 2.10 are equivalent. Let 𝜂 be the union of 𝜂1, . . . , 𝜂𝑘 .

Suppose that 𝑍 is a closed subvariety of 𝑋 such that 𝜂 |𝑍reg is trivial. Then we need to
show that 𝑠fac,𝑟 (𝑍) is not a point. In fact, since 𝜂 |𝑍reg is trivial, each 𝜂𝑖 |𝑍reg is trivial. By
Proposition 2.10, 𝑠𝜌𝑖 (𝑍) is a point for each 𝑖. By the property of the simultaneous Stein
factorization, 𝑠fac,𝑟 (𝑍) is also a point. So the above property (1) holds, that is, the pullback of
𝜎 to 𝑍norm is large and has discrete monodromy. The proposition is proved. □

Therefore, given any conic Lagrangian cycle Λ ⊂ 𝑇∗𝑋 , we can apply Proposition 4.12 and
Corollary 3.10 to iterate the vanishing cycle functor Φ𝜂 to achieve the following.

Corollary 4.13. Let 𝑋 be a smooth projective variety and let 𝜌 : 𝜋1(𝑋) → GL(𝑟,C) be
a semisimple and large representation. Let 𝜎 : 𝜋1(𝑋) → GL(𝑁,C) be the representation
constructed in Proposition 4.12, and let 𝐿𝜎 be the associated local system. Then, given any
conic Lagrangian cycle 𝑇∗

𝑍
𝑋 , there exist subvarieties 𝑍𝑖 and rational numbers 𝜇𝑖 > 0 with

1 ≤ 𝑖 ≤ 𝑚 satisfying the following properties.
(1) As intersection numbers in 𝑇∗𝑋 , we have

𝑇∗𝑍𝑋 · 𝑇∗𝑋𝑋 =
∑︁

1≤𝑖≤𝑚
𝜇𝑖𝑇
∗
𝑍𝑖
𝑋 · 𝑇∗𝑋𝑋.

(2) For each 𝑖, the pullback of 𝐿𝜎 to the normalization 𝑍𝑖,norm of 𝑍𝑖 is large and has discrete
monodromy.

Remark 4.14. If 𝜂 = 𝑑𝑓 for some holomorphic function 𝑓 on 𝑋 , then the support of Φ𝜂 (𝑇∗𝑍𝑋)
in 𝑋 is contained in the critical locus of 𝑓 |𝑍 in the stratified sense. In particular, 𝑓 has
constant value on each irreducible component of the support of Φ𝜂 (𝑇∗𝑍𝑋). Consequently,
Φ𝜂 ◦ Φ𝜂 (𝑇∗𝑍𝑋) = Φ𝜂 (𝑇∗𝑍𝑋). However, when 𝜂 is a closed multivalued one-form on 𝑋 , the
above identity may not hold even up to a scalar. In fact, over a small ball in the unbranching
locus 𝑋◦, 𝜂 can be considered as a union of closed one-forms 𝜂1, . . . , 𝜂𝑙 (possibly with
multiplicity), and locally we can assume 𝜂𝑖 = 𝑑𝑓𝑖. Then locally, Φ𝜂 =

∑
1≤𝑖≤𝑙 Φ𝑑𝑓𝑖 . Even

though Φ𝑑𝑓𝑖 ◦Φ𝑑𝑓𝑖 (𝑇∗𝑍𝑋) = Φ𝑑𝑓𝑖 (𝑇∗𝑍𝑋), we have no control about the terms Φ𝑑𝑓𝑖 ◦Φ𝑑𝑓 𝑗 (𝑇∗𝑍𝑋).

Proof of Theorem 1.5 in the case when 𝐾 = C and 𝜌 is semisimple. By Corollary 4.13 (1), it
is sufficient to show that 𝑇∗

𝑍𝑖
𝑋 · 𝑇∗

𝑋
𝑋 ≥ 0, where 𝑍𝑖 satisfies the conditions in Corollary 4.13

(2). By Proposition 4.1, the above inequality holds. □

5. Mixed period maps of R-VMHS and positivity

5.1. Positivity from the mixed period maps. In this subsection, we prove the following
analogue of Proposition 4.1 for mixed period maps.

Proposition 5.1. Let 𝑋 be a projective manifold with two representations {𝜎𝑖 : 𝜋1(𝑋) →
GL(𝑁𝑖,C)}𝑖=1,2 such that
(1) 𝜎1 is semisimple and 𝐿𝜎1 underlies a C-VHS;
(2) 𝐿𝜎2 underlies a R-VMHS of weight −1, 0.
Let 𝑍 be an irreducible subvariety of 𝑋 , and let 𝑝 : 𝑍norm → 𝑍 be its normalization.
Let Γ1 := 𝜎1(Im[𝜋1(𝑍norm → 𝜋1(𝑋)]) and Γ𝑠𝑠2 := 𝜎𝑠𝑠2 (Im[𝜋1(𝑍norm) → 𝜋1(𝑋)]), where
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𝜎𝑠𝑠2 : 𝜋1(𝑋) → GL(𝑁2,C) is the semisimplification of 𝜎2, which underlies a C-VHS 𝐿𝜎𝑠𝑠
2

.
Assume that
(i) the product of the period map of 𝑝∗𝜎1 and the mixed period map of 𝑝∗𝜎2, denote by

𝑍univ
norm → 𝒟1 ×ℳ, has discrete fibers. Here 𝑍univ

norm is the universal cover of 𝑍norm, 𝒟1 is
the period domain of 𝐿𝜎1 , and ℳ is the mixed period domain of 𝐿𝜎2 .

(ii) The monodromy group Γ1 (resp. Γ𝑠𝑠2 ) acts on 𝒟1 (resp. 𝒟2) respectively. Here 𝒟2 is the
period domain of the C-VHS 𝐿𝜎𝑠𝑠

2
.

Then, the intersection number 𝑇∗
𝑍
𝑋 · 𝑇∗

𝑋
𝑋 ≥ 0. Equivalently, (−1)dim 𝑍 𝜒(𝐸𝑢𝑍 ) ≥ 0.

Using the same finite covering trick as in the beginning of the previous section, we can
reduce to the case when Γ1 and Γ𝑠𝑠2 are torsion free. We will work under this assumption for
the remaining of this subsection.

Since the image of 𝜎2 : 𝜋1(𝑋) → GL(𝑁2,R) may not be discrete, we will need a technical
proposition to deduce desired positivity. Before stating the proposition, we need a lemma.
Lemma 5.2. Let 0 → 𝑁 → 𝑀 → 𝑀′ → 0 be a short exact sequence of holomorphic vector
bundles on a complex manifold 𝑋 . Assume that 𝑀′ is trivial of rank 𝑟. Consider 𝑁 as a
complex submanifold of 𝑀 , and denote by 𝜄 : 𝑁 → 𝑀 the inclusion map. Let 𝐶 be an equi-
dimensional subvariety of 𝑀 , and [𝐶] ∈ 𝐻𝐵𝑀

2 dim𝐶
(𝐶,Z) be the fundamental class of 𝐶. Then

𝜄∗ [𝐶] ∈ 𝐻𝐵𝑀
2 dim𝐶−2𝑟 (𝐶 ∩ 𝑁,Z) can be represented by an effective analytic (dim𝐶 − 𝑟)-cycle

in 𝐶 ∩ 𝑁 , where the pullback class 𝜄∗ [𝐶] is defined as the Borel-Moore homology analogue of
[Ful98, Chapter 8].
Proof. Since 𝑀′ is a trivial bundle, the normal bundle of 𝑁 in 𝑀 is also trivial. Using the
deformation to normal cone [Ful98, Chapter 5], we can replace 𝑀 by a trivial vector bundle
over 𝑁 and 𝐶 a cone of the new vector bundle 𝑀 . Now, we can take a general global section Γ

of 𝑀 , and the image of Γ ∩𝐶 in 𝑁 is contained in 𝑁 ∩𝐶 and it represents the class 𝜄∗ [𝐶]. □
Proposition 5.3. Let 𝜋𝐵 : 𝐸 → 𝐵 be a holomorphic vector bundle over a complex ball
𝐵. Suppose that there is a Z𝑘 -action on 𝐸 by fiberwise translations, i.e., there are sections
𝑠1, . . . , 𝑠𝑘 of the vector bundle, and (𝑚1, . . . , 𝑚𝑘 ) ∈ Z𝑘 acts on 𝐸 by fiberwise addition with
𝑚1𝑠1 + · · · + 𝑚𝑘 𝑠𝑘 . Let 𝜋𝑋 : 𝑋 → 𝑋 be a Z𝑘 -covering map of complex manifolds. Denote the
support of the constructible function 𝛾 by Supp(𝛾). Suppose we have a commutative diagram

𝑋

𝜋𝑋
��

𝑓
// 𝐸

𝜋𝐵
��

𝑋
𝑓
// 𝐵

(14)

where 𝑓 is a Z𝑘 -equivariant holomorphic map. If 𝛾 is a constructible function on 𝑋 satisfying
(1) for any 𝑒 ∈ 𝐸 , 𝜋−1

𝑋
Supp(𝛾) ∩ 𝑓 −1(𝑒) is a discrete set,

(2) 𝑓 |Supp(𝛾) : Supp(𝛾) → 𝐵 is proper,
(3) 𝛾 is CC-effective,
then 𝑓∗(𝛾) is also CC-effective.
Proof. Since being CC-effective is a local property, by possibly shrinking 𝐵, we can assume
that 𝛾 is constructible with respect to a finite Whitney stratification of 𝑋 . Furthermore, without
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loss of generality, we can assume that 𝛾 = (−1)dim 𝑍𝐸𝑢𝑍 for some irreducible closed analytic
subvariety 𝑍 of 𝑋 . Then 𝐶𝐶 (𝛾) = 𝑇∗

𝑍
𝑋 , which we denote by Λ. We will construct some an

effective conic Lagrangian cycle on 𝐵 and show that it is equal to 𝐶𝐶 ( 𝑓∗(𝛾)).
Consider the maps of vector bundles on 𝑋:

𝜋∗𝑋 𝑓
∗𝑇∗𝐵 = 𝑓 ∗𝜋∗𝐵𝑇

∗𝐵→ 𝑓 ∗𝑇∗𝐸 → 𝑇∗𝑋,

induced by 𝑓 and 𝜋𝐵. Since 𝑓 is Z𝑘 -equivariant, there is a natural Z𝑘 -action on 𝑓 ∗𝑇∗𝐸 . There
are also obvious Z𝑘 -actions on 𝜋∗

𝑋
𝑓 ∗𝑇∗𝐵 and 𝑇∗𝑋 , and moreover, the above two maps are Z𝑘

equivariant. Taking quotient of the Z𝑘 -action, we have a commutative diagram

𝑓 ∗𝜋∗
𝐵
𝑇∗𝐵

𝜄
//

��

𝑓 ∗𝑇∗𝐸
�̃�1

//

𝜋𝐸
��

𝑇∗𝑋

𝜋𝑇

��

𝑓 ∗𝑇∗𝐵
𝜄
// 𝑓 ∗𝑇∗𝐸/Z𝑘 𝑣1

// 𝑇∗𝑋

where the first row consists of vector bundles on 𝑋 , the second row consists of vector bundles
on 𝑋 , all horizontal maps are vector bundle maps and vertical maps are covering maps.

Claim 5.4. The set-theoretic preimage 𝑣−1
1 (Λ) is an analytic subset of dimension at most

dim 𝐸 .

Proof of the claim. Let Λ̃ = 𝜋−1
𝑇
(Λ). Then Λ̃ = 𝑇∗

𝜋−1
𝑋
𝑍
𝑋 is a conic Lagrangian (not necessarily

connected) subvariety of 𝑇∗𝑋 .
Consider the maps induced by 𝑓 : 𝑋 → 𝐸 :

𝑇∗𝑋
�̃�1←− 𝑓 ∗𝑇∗𝐸 �̃�2−→ 𝑇∗𝐸.

It follows from [Kas77, Proposition 4.9] that there is a locally finite conic Lagrangian cycle
Λ′ in 𝑇∗𝐸 such that �̃�−1

1 (Λ̃) ⊂ 𝑣
−1
2 (Λ

′). The property (1) of the proposition implies that the
preimage of any point under �̃�2 is also a discrete set. Thus,

dim �̃�−1
1 (Λ̃) ≤ dim 𝑣−1

2 (Λ
′) ≤ dimΛ′ = dim 𝐸,

where dim 𝐸 is the dimension of the total space of 𝐸 . Since �̃�−1
1 (Λ̃) is a covering space of

𝑣−1
1 (Λ), it follows that dim 𝑣−1

1 (Λ) ≤ dim 𝐸 . □

Consider the following maps induced by 𝑓 : 𝑋 → 𝐵:

𝑇∗𝑋
𝑢1←− 𝑓 ∗𝑇∗𝐵 𝑢2−→ 𝑇∗𝐵.

Notice that the composition �̃�1 ◦ 𝜄 : ( 𝑓 ◦ 𝜋𝐵)∗𝑇∗𝐵→ 𝑇∗𝑋 is equal to the natural pullback map
of cotangent bundle induced by 𝑓 ◦ 𝜋𝐵. Thus, the quotient map 𝑣1 ◦ 𝜄 : 𝑓 ∗𝑇∗𝐵→ 𝑇∗𝑋 is equal
to the natural pullback map 𝑢1.

Notice that on 𝐸 , we have a short exact sequence of holomorphic vector bundles

0→ 𝜋∗𝐵𝑇
∗𝐵→ 𝑇∗𝐸 → 𝜋∗𝐵𝐸

∨ → 0,

where 𝐸∨ is the dual vector bundle of 𝐸 . Taking the pullback to 𝑋 , we have

0→ 𝑓 ∗𝜋∗𝐵𝑇
∗𝐵→ 𝑓 ∗𝑇∗𝐸 → 𝑓 ∗𝐸∨ → 0.
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Taking the quotient by the Z𝑘 -action, we have a short exact sequence of vector bundles on 𝑋:
0→ 𝑓 ∗𝑇∗𝐵→ 𝑓 ∗𝑇∗𝐸/Z𝑘 → 𝑓 ∗𝐸∨ → 0.

Now, take the scheme-theoretic preimage 𝑣−1
1 (Λ), which, by Claim 5.4, can be regarded as

an effective analytic dim(𝐸)-cycle in 𝑓 ∗𝑇∗𝐸/Z𝑘 . By the above argument and Lemma 5.2, there
exists an effective analytic dim(𝐵)-cycle Λ′′ on 𝜄−1𝑣−1

1 (Λ), representing the class 𝜄∗ [𝑣−1
1 (Λ)].

Since 𝑓 is a proper map, so is 𝑢2, and hence 𝑢2★(Λ′′) is a well-defined dim(𝐵)-analytic cycle
in 𝑇∗𝐵.

Claim 5.5. The analytic dim(𝐵)-cycle 𝑢2★(Λ′′) is equal to 𝐶𝐶 ( 𝑓∗(𝛾)). In particular, 𝑢2★(Λ′′)
does not depend on the choice of Λ′′ we made when applying Lemma 5.2.

Proof of the claim. Let us give the precise Borel-Moore homology groups in which each
cycle/class is defined. As in section 2.3, there exist Whitney stratifications 𝒮 and 𝒮

′ of 𝑋 and
𝐵 respectively such that 𝛾 is constructible with respect to 𝒮 and 𝑓 is a stratified map with
respect to 𝒮 and 𝒮

′. By possibly shrinking 𝐵, we can assume that both 𝒮 and 𝒮
′ are finite

stratifications.
Now, we can regard 𝐶𝐶 (𝛾) = 𝑇∗

𝑍
𝑋 = Λ as an element in 𝐻𝐵𝑀

2 dim 𝑋
(𝑇∗

𝒮
𝑋,Z). Then the

scheme-theoretic preimage 𝑣−1
1 (Λ), considered as an analytic dim(𝐸)-cycle, represents the

element 𝑣∗1(Λ) ∈ 𝐻
𝐵𝑀
2 dim 𝐸

(𝑣−1
1 (𝑇

∗
𝒮
𝑋),Z). Since 𝑣1 ◦ 𝜄 = 𝑢1, we have

𝜄∗𝑣∗1(Λ) = 𝑢
∗
1(Λ) = [Λ

′′] ∈ 𝐻𝐵𝑀
2 dim 𝐵 (𝑢

−1
1 (𝑇

∗
𝒮
𝑋),Z).

Then,
𝑢2∗𝑢

∗
1(Λ) = [𝑢2★(Λ′′)] ∈ 𝐻𝐵𝑀

2 dim 𝐵 (𝑇
∗
𝒮′𝐵,Z). (15)

By section 2.3, 𝑢2★(Λ′′) and𝐶𝐶 ( 𝑓∗(𝛾)) represent the same homology classes in𝐻𝐵𝑀
2 dim 𝐵

(𝑇∗
𝒮′𝐵,Z).

Since𝑇∗
𝒮′𝐵 is the union of finitely many dim(𝐵)-dimensional irreducible varieties,𝐻𝐵𝑀

2 dim 𝐵
(𝑇∗

𝒮′𝐵,Z)
is generated by their fundamental classes, and hence the equality (15) implies that 𝑢2★(Λ′′) =
𝐶𝐶 ( 𝑓∗(𝛾)) as analytic dim(𝐵)-cycles. □

By the construction, 𝑢2★(Λ′′) is evidently effective. Thus, 𝑓∗(𝛾) is CC-effective. The
proposition is proved. □

Proof of Proposition 5.1. Under the assumptions of Proposition 5.1, we can construct the
following commutative diagram analogous to diagram (10),

𝑍norm

��

𝑝
// 𝑍

��

𝜄
// 𝑋

��

𝜙
// 𝒟1 ×ℳ

𝜋𝑀

��

𝑍 𝑠𝑠norm

��

𝑝𝑠𝑠
// 𝑍 𝑠𝑠

𝜄𝑠𝑠
// 𝑋 𝑠𝑠

𝜙𝑠𝑠
// 𝒟1 ×𝒟2

𝜋Γ

��

𝑍norm
𝜙

// Γ\𝒟1 ×𝒟2

(16)

where
• Γ is the image of the composition

𝜋1(𝑍norm)
𝜏−→ 𝜋1(𝑋)

𝜎1×𝜎𝑠𝑠
2−−−−−→ GL(𝑁1,C) × GL(𝑁2,C),
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• 𝑋 and 𝑋 𝑠𝑠 are the covering spaces of 𝑋 induced by ker[𝜎1 × 𝜎2] and ker[𝜎1 × 𝜎𝑠𝑠2 ]
respectively;

• 𝑍norm and 𝑍 𝑠𝑠norm are the covering spaces of 𝑍norm induced by ker[(𝜎1 × 𝜎2) ◦ 𝜏] and
ker[(𝜎1 × 𝜎𝑠𝑠2 ) ◦ 𝜏] respectively;

• choosing a lifting 𝑍 𝑠𝑠norm → 𝑋 𝑠𝑠 of 𝑍norm → 𝑋 , let 𝑍 𝑠𝑠norm
𝑝𝑠𝑠

−−→ 𝑍 𝑠𝑠
𝜄𝑠𝑠−−→ 𝑋 𝑠𝑠 be the

factorization such that 𝑝𝑠𝑠 is surjective and 𝜄𝑠𝑠 is injective;
• choosing a lifting 𝑍norm → 𝑋 of 𝑍 𝑠𝑠norm → 𝑋 𝑠𝑠, let 𝑍norm

𝑝
−→ 𝑍

𝜄−→ 𝑋 be the factorization
such that 𝑝𝑠𝑠 is surjective and 𝜄𝑠𝑠 is injective;

• 𝜙, 𝜙𝑠𝑠 and 𝜙 are the period maps.
Notice that all vertical maps are covering maps except 𝜋𝑀 . Moreover, 𝜙 : 𝑍norm → Γ\𝒟1×𝒟2,
𝜙 ◦ 𝜄 ◦ 𝑝 : 𝑍norm → 𝒟1 ×ℳ and 𝜙𝑠𝑠 ◦ 𝜄𝑠𝑠 ◦ 𝑝𝑠𝑠 : 𝑍 𝑠𝑠norm → 𝒟1 ×ℳ are all proper holomorphic
maps. By definition, Γ is a subgroup of Γ1 × Γ2. Since both Γ1 and Γ2 are discrete and
torsion-free, so is Γ.

Claim 5.6. Let 𝛿 be the constructible function on 𝑍norm as defined in Definition 4.3. Under the
above notations, 𝜙∗(𝛿) is CC-effective.

Proof. Let 𝛿 be the pullback of 𝛿 to 𝑍 𝑠𝑠norm. As an analog of Lemma 4.7, 𝑝𝑠𝑠∗ (𝛿) is CC-effective.
Since 𝜄𝑠𝑠 is a closed embedding, (𝜄𝑠𝑠 ◦ 𝑝𝑠𝑠)∗(𝛿) is also CC-effective.

Let 𝑍univ
norm → 𝒟1 ×ℳ be the product of the period map of 𝑝∗𝜎1 and the mixed period map

of 𝑝∗𝜎2. By the assumptions in Item (i) it has discrete fibers. Note that it factors through the
proper map 𝜙◦ 𝜄◦ 𝑝 : 𝑍norm → 𝒟1×ℳ is proper and the étale cover 𝑍univ

norm → 𝑍norm. It implies
that 𝜙◦ 𝜄◦ 𝑝 : 𝑍norm → 𝒟1×ℳ is a finite morphism. Since 𝜙 is surjective, 𝜄◦ 𝑝 : 𝑍 → 𝒟1×ℳ
is also a finite morphism.

By definition, the deck transfomration group of the normal covering map 𝑍 𝑠𝑠norm → 𝑍norm
is equal to Γ. Thus, the bottom rectangle of (16) is Cartesian. Since 𝑍norm is projective, 𝜙 is
proper, and hence 𝜙𝑠𝑠 ◦ 𝜄𝑠𝑠 ◦ 𝑝𝑠𝑠 : 𝑍 𝑠𝑠norm → 𝒟1 ×𝒟2 is also proper. Since 𝑝𝑠𝑠 is surjective,
𝜙𝑠𝑠 ◦ 𝜄𝑠𝑠 : 𝑍 𝑠𝑠 → 𝒟1 ×𝒟2 is also proper.

Denote the kernel of the natural map Im(𝜎1 × 𝜎2) → Im(𝜎1 × 𝜎𝑠𝑠2 ) by Γ0. Then the
monodromy action of Γ0 on 𝒟1 × 𝒟2 is trivial. By definition, Γ0 is also equal to the deck
transformation group of the normal covering map 𝑋 → 𝑋 𝑠𝑠. Since the period maps are
compatible with the monodromy actions, the map 𝜙 is Γ0-equivariant. As well-known facts for
mixed period domain and mixed period maps (see e.g. [Her99, Section 2]), the map ℳ → 𝒟2,
and hence 𝜋𝑀 : 𝒟1 ×ℳ → 𝒟1 ×𝒟2, are vector bundles. Moreover, Γ0 acts on the fibers of
𝜋𝑀 by linear translations.

Therefore, the constructible function (𝜄𝑠𝑠 ◦ 𝑝𝑠𝑠)∗(𝛿) satisfies the axiom of Proposition 5.3
with respect to the most upper-right square of (16) restricted to a small ball in 𝒟1 ×𝒟2. Since
CC-effectiveness is a local property, Proposition 5.3 implies that

𝜙𝑠𝑠∗ (𝜄𝑠𝑠 ◦ 𝑝𝑠𝑠)∗(𝛿) = 𝜙𝑠𝑠∗ 𝜄𝑠𝑠∗ 𝑝𝑠𝑠∗ (𝛿)

is CC-effective. Since the bottom rectangle of (16) is Cartesian, 𝜋∗
Γ
(𝜙∗(𝛿)) is equal to

𝜙𝑠𝑠∗ 𝜄
𝑠𝑠
∗ 𝑝

𝑠𝑠
∗ (𝛿). Thus, 𝜋∗

Γ
(𝜙∗(𝛿)) is CC-effective. Since 𝜋Γ is a covering map, we can conclude

that 𝜙∗(𝛿) is CC-effective. □



26 Y. DENG AND B. WANG

We can follow the same arguments as in the proof of Proposition 4.1. By Claim 5.6 and
Proposition 4.11, we know that 𝜒(𝜙∗(𝛿)) ≥ 0. The equations (11) and (12) also apply here,
and hence we have

(−1)dim 𝑍 𝜒(𝐸𝑢𝑍 ) = 𝜒(𝛿) = 𝜒(𝜙∗(𝛿)) ≥ 0. □

5.2. Techniques from the linear Shafarevich conjecture. In this subsection, we show the
mixed analogue of Proposition 4.12, using the techniques in the proof of the linear Shafarevich
conjecture in [EKPR12].

Proposition 5.7. Let 𝑋 be a projective manifold and let 𝜌 : 𝜋1(𝑋) → GL(𝑟,C) be a large
representation. Then there exists
• a semisimple representation 𝜎1 : 𝜋1(𝑋) → GL(𝑁1,C) underlying a C-VHS;
• a representation 𝜎2 : 𝜋1(𝑋) → GL(𝑁2,C) such that the associated local system 𝐿𝜎2

underlies an R-VMHS of weight −1, 0;
• and a multivalued closed holomorphic one form 𝜂 on 𝑋
such that for any irreducible subvariety 𝑍 of 𝑋 , when 𝜂 |𝑍reg is trivial,
(i) let 𝑝 : 𝑍norm → 𝑍 be the normalization. Then 𝑝∗𝜎1 : 𝜋1(𝑍norm) → GL(𝑁1,C) and

𝑝∗𝜎𝑠𝑠2 : 𝜋1(𝑍norm) → GL(𝑁2,C) both have discrete images.
(ii) Letting 𝜙1 : 𝑍univ

norm → 𝒟1 be the period map of 𝐿𝜎1 and 𝜙2 : 𝑍univ
norm → ℳ be the mixed

period map of 𝐿𝜎2 , then

(𝜙1, 𝜙2) : 𝑍univ
norm → 𝒟1 ×ℳ (17)

has discrete fibers.

Proof. Let 𝑠fac,𝑟 : 𝑋 → 𝑆fac,𝑟 be the factorization map defined in Definition 2.11. By the same
arguments in the proof of Proposition 4.12, there exists a closed mutivalued one-form 𝜂 on 𝑋
such that for any closed subvariety 𝑍 , 𝜂 |𝑍reg is trivial if and only if 𝑠fac,𝑟 (𝑍) is a point. From
now on, we will assume that 𝑠fac,𝑟 (𝑍) is a point.

In [DYK23, Proposition 3.13], the authors constructed
• a semisimple representation 𝜎1 : 𝜋1(𝑋) → GL(𝑁1,C) underlying a C-VHS;
• semisimple representations {𝜌𝑖 : 𝜋1(𝑋) → GL(𝑟, 𝑘)}𝑖=1,...,𝑛 where 𝑘 is a number field,
with the following properties.
(1) The image of 𝑝∗𝜌𝑖 : 𝜋1(𝑍norm) → GL(𝑟, 𝑘) is contained in GL(𝑟,O𝑘 ), where O𝑘 is the

ring of integer of 𝑘 . Moreover, the direct sum
𝑘⊕
𝑖=1

⊕
𝑤∈Ar(𝑘)

𝑝∗𝜌𝑖,𝑤 : 𝜋1(𝑍norm) →
∏

GL(𝑟,C)

is conjugate to 𝑝∗𝜎1, where Ar(𝑘) is the set of archimedean places of 𝑘 and 𝜌𝑖,𝑤 := 𝑤𝜌𝑖
for each 𝑤 ∈ Ar(𝑘). In particular, 𝑝∗𝜎1 : 𝜋1(𝑍norm) → GL(𝑁1,C) is a C-VHS with
discrete monodromy.

(2) Each geometric connected component of 𝑀 contains some [𝜚𝑖,𝑤].
(3) For any semisimple representation 𝜏 : 𝜋1(𝑋) → GL(𝑟,C) such that [𝜏] is in the same

geometric component of [𝜚𝑖,𝑤], 𝑝∗𝜏 is conjugate to 𝑝∗𝜌𝑖,𝑤.
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The representation 𝜎2 : 𝜋1(𝑋) → GL(𝑁2,R) underlying R-VMHS of weight −1, 0 is con-
structed in [EKPR12, Lemma 5.4], and let us briefly recall it. We define 𝑀VHS to be the set of
semisimple representations 𝜋1(𝑋) → GL(𝑟,C) underlying a C-VHS. Define TVHS

𝑀
to be the

set of the tensor product 𝑉1 ⊗ · · · ⊗ 𝑉𝑛 with each 𝑉𝑖 in 𝑀VHS. In [EKPR12, Lemma 5.4], 𝜎2
is defined to be the monodromy representation of

∑ℓ
𝑖=1(D1(V𝑖) + D1(V𝑖))) where {V𝑖}𝑖=1,...,ℓ

are certain objects in TVHS
𝑀

. Here D1(V𝑖) is the 1-step C-MVHS (hence of weight length 1)
constructed in [EKPR12, Definition 2.11] whose graded part is a direct sum of V𝑖 (cf. also
[ES11, Theorem 3.15]), and D1(V𝑖) a C-VMHS which is the conjugate of D1(V𝑖). Hence 𝐿𝜎2
is an R-VMHS of weight length 1.

By the definition of TVHS, we know that there exists {𝜚𝑛 : 𝜋1(𝑋) → GL(𝑟,C)}𝑛=1,...,𝑚
underlying C-VHS such that 𝑉 𝑗 = 𝐿𝜚1 ⊗ · · · ⊗ 𝐿𝜚𝑚 . By Item 2, there exists 𝜚 𝑗𝑛,𝑤𝑛

such that
[𝜚 𝑗𝑛,𝑤𝑛

] is in the same geometric component of [𝜚𝑛]. For any 𝑤 ∈ Ar(𝑘), by Simpson’s
ubiquity [Sim92, Theorem 3], we know that there exists a semisimple representation 𝜚vhs

𝑗𝑛,𝑤
:

𝜋1(𝑋) → GL(𝑟,C) underlying a C-VHS such that [𝜚vhs
𝑗𝑛,𝑤
] is in the same geometric connected

component of [𝜚 𝑗𝑛,𝑤] for each 𝑤 ∈ Ar(𝑘). Let 𝐿𝑛 be the local system associated to the direct
sum representation ⊕

𝑤∈Ar(𝑘),𝑤≠𝑤𝑛

𝜚vhs
𝑗𝑛,𝑤
⊕ 𝜚𝑛.

Then 𝐿𝑛 is aC-VHS. Moreover, by Item 3, 𝑝∗𝐿𝑛 is isomorphic to the local system corresponding
to the representation ⊕

𝑤∈Ar(𝑘)
𝑝∗𝜚 𝑗𝑛,𝑤 : 𝜋1(𝑍norm) →

∏
GL(𝑟,C).

By Item 1, we know that 𝑝∗𝐿𝑛 has discrete monodromy. Note that V 𝑗 is a direct factor of
𝐿1 ⊗ · · · ⊗ 𝐿𝑚. We can replace each V 𝑗 by 𝐿1 ⊗ · · · ⊗ 𝐿𝑚 and [EKPR12, Lemma 5.4] will still
holds. In this case, 𝑝∗𝜎𝑠𝑠2 has discrete image by our construction. Proposition 5.7.(i) is proved.

Let 𝑀 := 𝑀B(𝜋1(𝑋),GL𝑟) (C). We define 𝐻0
𝑀

to be the intersection of the kernels of all
semisimple representations 𝜋1(𝑋) → GL(𝑟,C). Let 𝐻1

𝑀
⊂ 𝐻0

𝑀
be the intersection of 𝐻0

𝑀
and

the kernels of the monodromy representation of D1(𝐿𝜎) with 𝜎 ∈ TVHS
𝑀

. Let 𝜋𝑋 : 𝑋univ → 𝑋

be the universal covering map. Denote by �̃� 𝑖
𝑀

:= 𝑋univ/𝐻𝑖
𝑀

for 𝑖 = 0, 1 and let 𝜋𝑖 : �̃� 𝑖
𝑀
→ 𝑋

be the covering map. In [DYK23, Lemma 3.30], it is proved that

Claim 5.8. Each connected component of the fiber of the holomorphic map

(𝑠fac,𝑟 ◦ 𝜋0, �̃�1) : �̃�0
𝑀
→ 𝑆fac,𝑟 ×𝒟1 (18)

is compact. Here �̃�1 : �̃�0
𝑀
→ 𝒟1 is the period map of 𝐿𝜎1 .

By the generalized Stein factorization discussed in Section 2.5, the set 𝑆𝑀 of connected
components of fibres of can be endowed with the structure of a normal complex space such
that (18) factors through a proper holomorphic fibration Ψ0 : �̃�0

𝑀
→ 𝑆0

𝑀
. The Galois group

𝜋1(𝑋)/𝐻0
𝑀

induces a properly discontinuous action on 𝑆0
𝑀

such that Ψ0 is equivariant. By
[DYK23, Proposition 3.13], the reductive Shafarevich morphism Sh𝑀 : 𝑋 → Sh𝑀 (𝑋) of 𝑀 is
the quotient of Ψ0 by this action 𝜋1(𝑋)/𝐻0

𝑀
. Namely, for any subvariety 𝑍 of 𝑍 , Sh𝑀 (𝑍) is
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a point if and only if 𝜏(Im[𝜋1(𝑍norm) → 𝜋1(𝑋)]) is finite for any semisimple representation
𝜏 : 𝜋1(𝑋) → GL(𝑟,C).

Note that the mixed period map 𝜑2 : 𝑋univ → ℳ of 𝐿𝜎2 factors through �̃�2 : �̃�1
𝑀
→ ℳ.

It is proved in [EKPR12, Lemma 5.5] that each connected component of the fiber of the
holomorphic map

(�̃�2, sh𝑀 ◦ 𝜋1) : �̃�1
𝑀
→ℳ × Sh𝑀 (𝑋) (19)

is compact. By the generalized Stein factorization again, the set 𝑆1
𝑀

of connected components
of fibres of can be endowed with the structure of a normal complex space such that (19) factors
through a proper holomorphic fibration Ψ1 : �̃�1

𝑀
→ 𝑆1

𝑀
. The Galois group 𝜋1(𝑋)/𝐻1

𝑀
induces

a properly discontinuous action on 𝑆1
𝑀

such that Ψ1 is equivariant. Let sh1
𝑀 : 𝑋 → Sh1

𝑀 (𝑋)
be the quotient of Ψ1 by this action 𝜋1(𝑋)/𝐻1

𝑀
. Let 𝐻 be the intersection of the kernels of all

linear representations 𝜌 : 𝜋1(𝑋) → GL(𝑟,C). A crucial fact proven in [EKPR12, Proposition
3.10 & p.1549] is that, sh1

𝑀 : 𝑋 → Sh1
𝑀 (𝑋) is the Shafarevich morphism sh𝐻 : 𝑋 → Sh𝐻 (𝑋)

of (𝑋, 𝐻).

Claim 5.9. sh𝐻 : 𝑋 → Sh𝐻 (𝑋) is the identity map.

Proof. Note that 𝐻 ⊂ ker 𝜌. Hence there is an injection

𝜋1(𝑋)/ker 𝜌 → 𝜋1(𝑋)/𝐻.
Since 𝜌 : 𝜋1(𝑋) → GL(𝑟,C) is a large representation, for any closed subvariety 𝑍 ⊂ 𝑋 , the
image 𝜋1(𝑍norm) → 𝜋1(𝑋)/ker 𝜌 is an infinite group. Hence Im[𝜋1(𝑍norm) → 𝜋1(𝑋)/𝐻] is
also infinite. Therefore, the fibers of sh𝐻 : 𝑋 → Sh𝐻 (𝑋) are zero dimensional. Since sh𝐻 has
connected fibers, and Sh𝐻 (𝑋) is normal, it follows that sh𝐻 is the identity map. The claim is
proved. □

Therefore, sh1
𝑀 : 𝑋 → Sh1

𝑀 (𝑋) is the identity map. By our construction of sh1
𝑀 and sh0

𝑀 ,
we conclude that

(𝑠fac,𝑟 ◦ 𝜋𝑋 , 𝜑1, 𝜑2) : 𝑋univ → 𝑆fac,𝑟 ×𝒟1 ×ℳ (20)

has discrete fibers, where 𝜑1 : 𝑋univ →ℳ is the period map of 𝐿𝜎1 . Since 𝑠fac,𝑟 (𝑍) is a point,
it follows that

(𝜙1, 𝜙2) : 𝑍univ
norm → 𝒟1 ×ℳ

has discrete fibers. Proposition 5.7.(ii) is proved. We complete the proof of the proposition. □

5.3. Proof of Theorem 1.5 in the case when 𝐾 = C and 𝜌 is linear. After proving Propo-
sitions 5.1 and 5.7, we are in the same senario as in the semisimple case. So we only give a
sketch.

Proof of Theorem 1.5 in the case when 𝐾 = C and 𝜌 is not necessarily semisimple. We apply
Proposition 5.7 to construct a semisimple representation 𝜎1 : 𝜋1(𝑋) → GL(𝑁1,C) underlying
a C-VHS, a representation 𝜎2 : 𝜋1(𝑋) → GL(𝑁2,R) underlying a R-VMHS of weight −1, 0,
and a multivalued one form 𝜂 on 𝑋 such that they satisfies the properties therein. We use the
vanishing cycle functor Φ𝜂 and apply Corollary 3.10 repeatedly so that we reduce the proof
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to the case where 𝜂 |𝑍 is trivial. Then the properties in Proposition 5.7 are fulfilled. We then
apply Proposition 5.1 to conclude that 𝑇∗

𝑍
𝑋 · 𝑇∗

𝑋
𝑋 ≥ 0. □
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