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Abstract. This survey presents recent developments concerning the Shafare-

vich conjecture, non-abelian Hodge theories, hyperbolicity, and the topology

of complex algebraic varieties, as well as the interplay among these areas.
More precisely, we present the main ideas and techniques involved in the

linear versions of the following conjectures: the Shafarevich conjecture, the
Chern–Hopf–Thurston conjecture, Kollár’s conjecture on the holomorphic Eu-

ler characteristic, the de Oliveira–Katzarkov–Ramachandran conjecture, and

Campana’s nilpotency conjecture. In addition, we discuss characterizations of
the hyperbolicity of complex quasi-projective varieties via representations of

their fundamental groups, together with the generalized Green–Griffiths–Lang

conjecture in the presence of a big local system.

Parmi les combinaisons que l’on choisira, les plus
fécondes seront souvent celles qui sont formées
d’éléments empruntés à des domaines très éloignés.

— Henri Poincaré, Science et méthode (1908)
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1. Introduction

1.1. Overview of the Paper. The study of the fundamental groups of alge-
braic varieties lies at the intersection of algebraic topology and algebraic geometry.
It traces back to the foundational work of Picard, Lefschetz, Hodge, Hirzebruch,
and Deligne. Subsequent breakthroughs, notably the theory of variations of Hodge
structures developed by the school of Griffiths, and the non-abelian Hodge the-
ory due to Simpson, Corlette, Gromov–Schoen, and T. Mochizuki, have provided
powerful tools for understanding the topology of complex algebraic varieties.

In this survey, I focus on the following question: how do representations of
the fundamental group of the algebraic variety into GL𝑁 (𝐾), where 𝐾 is a field,
influence the geometry of such variety? More specifically, we seek to understand how
such representations interact with the topology of the variety, its hyperbolicity, and
various notions of positivity in algebraic geometry. This perspective is particularly
appealing, as it naturally connects diverse areas of mathematics, including harmonic
map theory and Nevanlinna theory.

In § 1.2, we begin with a classical problem in geometric topology, namely the
Chern–Hopf–Thurston conjecture, which concerns the sign of the Euler characteris-
tic of closed aspherical even-dimensional real manifolds. If we further assume that
such an aspherical manifold carries the structure of a complex projective variety, we
are naturally led to the study of algebraic varieties with large (or big) fundamental
groups. We then present recent progress related to this conjecture, as well as a
conjecture of Kollár regarding the positivity of Euler characteristic of the canonical
bundle of projective varieties with big fundamental groups. Finally, we discuss our
results on a conjecture of De Oliveira–Katzarkov–Ramachandran concerning the
deformation openness of the property of having a big fundamental group.

In § 1.3, after discussing several basic examples that illustrate necessary con-
ditions of fundamental groups for hyperbolicity, we present a positive result on the
above question by showing that a smooth complex quasi-projective variety admit-
ting a local system over an arbitrary field with semisimple algebraic monodromy
group is of log general type and is pseudo Picard or Brody hyperbolic. We then turn
to the generalized Green–Griffiths–Lang conjecture, which relates pseudo Picard or
Brody hyperbolicity to some positivity in algebraic geometry. After reviewing the
relatively few known results on this conjecture, we present our solution in the case
of varieties admitting a big local system.

A central theme of this survey is developed in § 2, which is devoted to the
Shafarevich conjecture. This conjecture predicts that the universal cover 𝑋 of a
smooth complex projective variety 𝑋 is holomorphically convex. After providing
an overview of the historical background, we outline the principal tools used in
its study. These include non-abelian Hodge theory in the archimedean setting, as
developed by Corlette, Simpson, and Mochizuki, as well as the non-archimedean
setting initiated by Gromov–Schoen, and further developed by Katzarkov, Zuo,
and Eyssidieux. We then describe our recent progress on extending the Gromov–
Schoen theory to quasi-projective varieties. Building on these developments, we
explain further recent progress on the Shafarevich conjecture and sketch a proof
for the case of complex projective surfaces with reductive fundamental group, in-
tended to highlight the key ideas underlying the general theory. The lecture notes
by Eyssidieux [Eys11] and his two seminal papers with Katzarkov, Pantev, and
Ramachandran [Eys04,EKPR12] represent some of the most profound work on
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this problem. In this survey, we aim to provide new perspectives on the conjecture
and to emphasize that the techniques arising from its study play a crucial role in
the proofs of the main results discussed in §§ 1.2 and 1.3.

Finally, in §§ 3 and 4, we outline the main ideas underlying the proofs of the re-
sults presented in §§ 1.2 and 1.3, using methods developed in the study of the linear
Shafarevich conjecture. In § 5, we present several applications of these techniques,
including Campana’s conjecture on fundamental groups of special varieties; a con-
jecture of Claudon–Höring–Kollár on the structure of universal covers of projective
varieties; a structure theorem motivated by a conjecture of Kollár.

1.2. Algebraic varieties with big fundamental groups.
1.2.1. Large fundamental groups: motivation, conjectures and results. A well-

known conjecture of Hopf from the 1920s states that the Euler characteristic 𝜒(𝑀)
of a closed 2𝑛-dimensional Riemannian manifold of non-positive sectional curvature
must satisfy the inequality

(−1)𝑛𝜒(𝑀) ≥ 0.

This conjecture is known in dimensions 𝑛 = 1, 2 by the Gauss–Bonnet formula, but
it remains widely open for 𝑛 ≥ 3. Note that for any closed odd-dimensional real
manifold, its Euler characteristic is zero by the Poincaré duality theorem.

By the Cartan–Hadamard theorem, the universal cover 𝑀 of such a manifold
is diffeomorphic to R2𝑛; in particular, it is contractible. Therefore, 𝑀 is aspherical,
i.e., if its universal covering is contractible.

In the 1970s, Thurston proposed the following more general conjecture, now
referred to as the Chern–Hopf–Thurston conjecture.

Conjecture 1.1 (Chern–Hopf–Thurston). Let 𝑀 be a closed real 2𝑛-manifold. If
𝑀 is aspherical, then it satisfies the inequality

(−1)𝑛𝜒(𝑀) ≥ 0.

This conjecture is particularly appealing, as both the hypothesis and the con-
clusion are purely topological: no metric or curvature assumptions are involved. It
remains widely open for 𝑛 ≥ 2.

In this survey, we will focus on Conjecture 1.1 in the setting where 𝑀 admits
the structure of a complex projective variety. An easy observation is the following.

Lemma 1.2. Let 𝑋 be a smooth complex projective variety. If 𝑋 is aspherical or if
its universal covering 𝑋 is a Stein manifold, then 𝑋 has a large fundamental group.

We recall the notion of large fundamental group from [Kol95].

Definition 1.3 (Large fundamental group). A complex quasi-projective normal
variety 𝑋 is said to have large fundamental group if, for every closed irreducible
positive-dimensional subvariety 𝑍 ⊂ 𝑋, the image

Im
[
𝜋1 (𝑍norm) −→ 𝜋1 (𝑋)

]
is an infinite group.

Remark 1.4. In alternative definitions of a large fundamental group, the normal-
ization of 𝑍 is sometimes omitted. Although 𝜋1 (𝑍norm) and 𝜋1 (𝑍) may differ with
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respect to finiteness—for example, one may be infinite while the other is finite, as
in the case of a rational nodal curve—their respective images in 𝜋1 (𝑋),

Im
[
𝜋1 (𝑍norm) −→ 𝜋1 (𝑋)

]
and Im

[
𝜋1 (𝑍) −→ 𝜋1 (𝑋)

]
,

are nevertheless expected to be either both infinite or both finite. This behavior
was predicted as a consequence of the Shafarevich conjecture (cf. Conjecture 1.5)
and was first observed by Gurjar [Gur87].

Proof of Lemma 1.2. We proceed by contradiction. Assume that there ex-
ists a closed subvariety 𝑍 ⊂ 𝑋 of dimension 𝑘 > 0 such that the image

Im
[
𝜋1 (𝑍norm) −→ 𝜋1 (𝑋)

]
is finite. Let 𝑍 ′ be a connected component of 𝜋−1

𝑋
(𝑍); note that 𝑍 ′ is a compact

subvariety of 𝑋. Let 𝑓 : 𝑌 → 𝑍 ′ be a desingularization and let 𝑔 : 𝑌 → 𝑋 be the
composite map.

If 𝑋 is Stein, it cannot contain a compact subvariety of positive dimension,
which yields an immediate contradiction.

If 𝑋 is contractible (the aspherical case), the composite map

𝐻2 (𝑋,C) −→ 𝐻2 (𝑋,C) −→ 𝐻2 (𝑌,C)
is zero. Fix an ample line bundle 𝐿 on 𝑋. Since the map on cohomology is zero,
the class 𝑐1 (𝑔∗𝐿) ∈ 𝐻2 (𝑌,C) vanishes. Consequently,∫

𝑌

𝑐1 (𝑔∗𝐿)𝑘 = 0.

However, since 𝐿 is ample and 𝑔 is a generically finite map onto its image, this
integral must be positive, which gives a contradiction. □

A partial converse to Lemma 1.2 is suggested by the famous conjecture of
Shafarevich.

Conjecture 1.5 (Shafarevich). Let 𝑋 be a smooth complex projective variety. If

𝑋 has a large fundamental group, then its universal covering 𝑋 is Stein.

While this conjecture remains open in full generality, a great achievement was
made by Eyssidieux, Katzarkov, Pantev, Ramachandran in [EKPR12].

Theorem 1.6 ( [EKPR12]). Let 𝑋 be a smooth complex projective variety. If

there exists a faithful representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C), then 𝑋 is holomorphi-
cally convex. In particular, if additionally 𝑋 has large fundamental group, then 𝑋

is Stein.

We will return to Conjecture 1.5 and Theorem 1.6 later.
A stronger converse to Lemma 1.2 would ask if a large fundamental group

implies asphericity. This is related to a question posed by Kollár: is the fundamental
group of a projective variety commensurable (up to finite kernels) with a group 𝐺′

that admits a quasi-projective 𝐾 (𝐺′, 1)?
However, Dimca, Papadima, and Suciu provided a negative answer in [DPS09].

They constructed a smooth projective variety 𝑋 whose universal covering is Stein
(satisfying the condition of a large fundamental group), yet 𝜋1 (𝑋) is not commen-
surable to any group admitting a quasi-projective 𝐾 (𝜋, 1). In particular, although
𝑋 has a large fundamental group, its universal cover is not contractible, meaning
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𝑋 is not aspherical. This demonstrates that the asphericity of projective varieties
is a strictly stronger condition than having a large fundamental group.

Motivated by this viewpoint, Arapura and Wang [AW25, Conjecture 1.2] pro-
posed the following conjecture.

Conjecture 1.7 (Arapura-Wang). Let 𝑋 be a complex projective 𝑛-fold with large
fundamental group. Then for any perverse sheaf P on 𝑋, one has

𝜒(𝑋,P) ≥ 0.

In particular, (−1)𝑛𝜒(𝑋) ≥ 0.

Observe that the shifted constant sheaf C[𝑛] is a perverse sheaf. Consequently,
we have

𝜒(𝑋,C[𝑛]) = (−1)𝑛𝜒(𝑋).
Therefore, Conjecture 1.7 is broader than Conjecture 1.1 in another direction. In
[AW25], Arapura and Wang proved their conjecture assuming the existence of a
faithful and cohomologically rigid representation 𝜋1 (𝑋) → GL𝑁 (C). In the author’s
joint work with Wang [DW24b], based on the strategy in [AW25], non-abelian
Hodge theories and techniques in [Eys04,EKPR12,DYK23].

Theorem 1.8 ( [DW24b]). Let 𝑋 be a smooth complex projective variety. If
there exists a large representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾), where 𝐾 is any field, then

𝜒(𝑋,P) ≥ 0

for any perverse sheaf on 𝑋.

In particular, we proved Conjecture 1.7 when 𝜋1 (𝑋) is linear, i.e., there exists
a faithful representation 𝜋1 (𝑋) → GL𝑁 (𝐾). Here the definition of large represen-
tation is analoguous to Definition 1.3. The representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (K), is
called large if, for every closed irreducible positive-dimensional subvariety 𝑍 ⊂ 𝑋,
the image

𝜚(Im[𝜋1 (𝑍norm) −→ 𝜋1 (𝑋)])
is an infinite group. We shall discuss the proof of Theorem 1.8 in the subsequent
sections.

1.2.2. Big fundamental groups. Note that a variety with large fundamental
group must be minimal ; specifically, it cannot contain any rational curves or A1-
curves. Consequently, the blow-up of an algebraic variety never has large funda-
mental group. To address this limitation, Kollár introduced a more natural and
birationally invariant notion:

Definition 1.9 (Big fundamental group). A complex quasi-projective normal va-
riety 𝑋 is said to have a big fundamental group if, for every closed irreducible
positive-dimensional subvariety 𝑍 ⊂ 𝑋 passing through a very general point, the
image

Im
[
𝜋1 (𝑍norm) −→ 𝜋1 (𝑋)

]
is infinite.

This condition is birationally invariant: if 𝑓 : 𝑋 → 𝑌 is a proper birational
morphism between quasi-projective normal varieties, then 𝑋 has a big fundamental
group if and only if 𝑌 does. In [Cam94], varieties with big fundamental groups are
also referred to as being of 𝜋1-general type.
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We shall now provide some examples of varieties with large or big fundamental
groups.

Example 1.10. Let 𝑋 be a complex quasi-projective normal variety. Then:

• If 𝑋 is a quasi-projective curve different from C and P1, then it has large
fundamental group.

• If the universal cover of 𝑋 is contractible, or a bounded symmetric domain,
or more generally a Stein manifold, then 𝑋 has large fundamental group.

• By the above result, if 𝑋 is an abelian variety, then it has large funda-
mental group.

• If 𝑓 : 𝑋 → 𝑌 is an étale morphism, then 𝑋 has a large (resp. big)
fundamental group if and only if 𝑌 does.

• Let 𝑓 : 𝑋 → 𝑌 be a morphism to another quasi-projective normal variety
𝑌 . If 𝑌 has large (resp. big) fundamental group and if 𝑓 is quasi-finite
(resp. generically finite onto its image), then 𝑋 has large (resp. big)
fundamental group.

• As a consequence, if 𝑋 has maximal quasi-Albanese dimension, i.e., the
quasi-Albanese map

𝑋 −→ Alb(𝑋)
is generically finite onto its image, then 𝑋 has big fundamental group.

• Suppose that 𝑋 carries a Z-VHS. If the period map

𝑝 : 𝑋 −→ 𝒟/Γ,

where 𝒟 is the associated period domain and Γ is the monodromy group,
is quasi-finite (resp. generically finite onto its image), then 𝑋 has large
(resp. big) fundamental group.

Note that Conjecture 1.7 concerns the topological aspect of varieties with large
fundamental groups. In general, the statement fails if we replace the condition
“large fundamental group” by “big fundamental group”, since the topological Euler
characteristic is not a birational invariant. However, one basic observation is that if
𝑓 : 𝑋 → 𝑌 is a birational morphism between two smooth projective varieties, then

𝜒(𝑋, 𝐾𝑋) = 𝜒(𝑌, 𝐾𝑌 ),

where 𝐾𝑋 and 𝐾𝑌 denote the canonical bundles of 𝑋 and 𝑌 . Recall that

𝜒(𝑋, 𝐾𝑋) =
dim𝑋∑︁
𝑖=0

(−1)𝑖 dim𝐻𝑖 (𝑋, 𝐾𝑋).

Motivated by this observation, Kollár proposed in [Kol95] the following conjecture,
which may be viewed as a sheaf-theoretic analogue of Conjecture 1.1.

Conjecture 1.11 (Kollár). Let 𝑋 be a smooth projective variety. If 𝑋 has big
fundamental group, then 𝜒(𝑋, 𝐾𝑋) ≥ 0.

Notice that Conjecture 1.11 holds when 𝑋 has maximal Albanese dimension,
thanks to the generic vanishing theorem of Green–Lazarsfeld [GL87]. Indeed, in
this case, [GL87] implies that for a generic topologically trivial line bundle 𝐿 ∈
Pic0 (𝑋),

𝐻𝑖 (𝑋, 𝐾𝑋 ⊗ 𝐿) = 0 for all 𝑖 ≥ 1.
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Hence,

𝜒(𝑋, 𝐾𝑋) = 𝜒(𝑋, 𝐾𝑋 ⊗ 𝐿) =
dim𝑋∑︁
𝑖=0

(−1)𝑖 dim𝐻𝑖 (𝑋, 𝐾𝑋 ⊗ 𝐿) = dim𝐻0 (𝑋, 𝐾𝑋 ⊗ 𝐿) ≥ 0.

This proof inspired us that some vanishing theorem for cohomology will be useful to
prove Conjecture 1.11. However, it seems that we do not have the generic vanishing
theorem for general varieties with big fundamental group. In [DW24a], for the case
where 𝜋1 (𝑋) is linear, Wang and the author established a vanishing theorem for
the 𝐿2-Dolbeault cohomology of 𝑋, analogous to the Green–Lazarsfeld theorem.

Theorem 1.12 ( [DW24a]). If there exists a big representation 𝜚 : 𝜋1 (𝑋) →
GL𝑁 (C), then

(i) 𝐻 𝑝,0

(2) (𝑋) = 0 for 0 ≤ 𝑝 ≤ 𝑛 − 1 and 𝐻𝑛,𝑞(2) (𝑋) = 0 for 1 ≤ 𝑞 ≤ 𝑛.
(ii) The Euler characteristic 𝜒(𝑋, 𝐾𝑋) ≥ 0.
(iii) If the strict inequality 𝜒(𝑋, 𝐾𝑋) > 0 holds, then

(a) there exists a nontrivial 𝐿2-holomorphic 𝑛-form on 𝑋;
(b) 𝑋 is of general type.

The representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (K), is called big if for every closed
irreducible positive-dimensional subvariety 𝑍 ⊂ 𝑋 passing through a very general
point, the image

𝜚(Im[𝜋1 (𝑍norm) −→ 𝜋1 (𝑋)])
is infinite.

Definition 1.13 (𝐿2-cohomology). Let (𝑌, 𝜔) be a complete Kähler manifold. Let
𝐿
𝑝,𝑞

(2) (𝑌 ) be the space of 𝐿2-integrable (𝑝, 𝑞)-forms with respect to the metric 𝜔. A

section 𝑢 is said to be in Dom 𝜕 if 𝜕𝑢 calculated in the sense of distributions is still
in 𝐿2. Then the 𝐿2-Dolbeault cohomology is defined as

𝐻
𝑝,𝑞

(2) (𝑌 ) = ker 𝜕
/
Im 𝜕 ∩Dom 𝜕.

If (𝑋, 𝜔) is a compact Kähler manifold, we write 𝐻 𝑝,𝑞

(2) (𝑋) for the 𝐿2-cohomology

computed with respect to the metric 𝜋∗
𝑋
𝜔. Note that this space is independent of

the choice of the Kähler metric 𝜔, since any two such pullback metrics on 𝑋 are
mutually bounded.

As is well-known to experts, once we have the vanishing of 𝐿2-cohomology in
Theorem 1.12.(i), one can use Atiyah’s 𝐿2-index theorem to prove that 𝜒(𝑋, 𝐾𝑋) ≥.
This proves Conjecture 1.11 in this case. We explain the proof below,

Proof of (i) =⇒ (ii)& (iii). We denote by Γ = 𝜋1 (𝑋) and dimΓ 𝐻
𝑛,𝑞

(2) (𝑋) the
Von Neumann dimension of 𝐻𝑛,𝑞(2) (𝑋) (cf. [Ati76] for the definition). By Atiyah’s

𝐿2-index theorem along with Theorem 1.12.(i), we have

𝜒(𝑋, 𝐾𝑋) =
𝑛∑︁
𝑞=0

(−1)𝑞 dimΓ 𝐻
𝑛,𝑞

(2) (𝑋) = dimΓ 𝐻
𝑛,0
(2) (𝑋) ≥ 0.(1.13.1)

Theorem 1.12.(ii) is proved.
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If the strict inequality (1.13.1) holds, then 𝐻𝑛,0(2) (𝑋) ≠ 0. Thus, one can choose

a non-trivial element 𝑓 ∈ 𝐻
𝑛,0
(2) (𝑋). In [Kol95, Chapter 13], Kollár, building on

ideas of Gromov [Gro91], introduced the Poincaré series

𝑃𝑘 ( 𝑓 ) :=
∑︁
𝛾∈Γ

𝛾∗
(
𝑓 2𝑘

)
(𝛾𝑥),

and showed that for each 𝑘 ∈ N, the series 𝑃𝑘 ( 𝑓 ) defines a Γ-invariant holomorphic
section of 2𝑘𝐾

𝑋
. Hence it descends to a pluricanonical section

𝑓𝑘 ∈ 𝐻0 (𝑋, 2𝑘𝐾𝑋).

Kollár then considers the linear series generated by products of these sections:

𝑅2𝑚 :=
{∏

𝑖 𝑓𝑘𝑖

��� ∑𝑖 𝑘𝑖 = 𝑚} ⊂ 𝐻0 (𝑋, 2𝑚𝐾𝑋).

In [Kol95, Theorem 13.9], he proves that for all sufficiently large 𝑚, the rational
map associated with 𝑅2𝑚 is birational onto its image, assuming that 𝑋 has big
fundamental group. This shows that 𝐾𝑋 is big, and thus proves Theorem 1.12.(iii).

We refer the interested reader to [Kol95, Chapter 13] for further details. □

Remark 1.14. Indeed, Kollár’s argument above also shows that for any holomor-
phic line bundle 𝐿 on 𝑋 with big fundamental group, the existence of a non-zero
𝐿2-section 𝐻0

(2) (𝑋, 𝐿) ≠ 0 implies that 𝐿 is a big line bundle.

1.2.3. Deformation of big fundamental groups. From Definitions 1.3 and 1.9,
one can see that the properties of having big or large fundamental groups depends
essentially on the algebraic structures of the varieties, as one has to make the test
for all subvarieties or all subvarieties passing to a general point. It is natural to ask
whether two algebraic varieties that are homeomorphism, one has big fundamental
groups if and only if the other has big fundamental group. This question holds
trivially for the curves. For surfaces, it was answered positively by Benoit Claudon
in [Cla10], based on a theorem by Siu [Siu87].

We first define a topological invariant 𝑔(𝑋) for any compact Kähler manifold 𝑋
as follows. A vector subspace 𝑉 ⊂ 𝐻1 (𝑋,R) is said to be isotropic if it is annihilated
by the exterior product

Λ2𝐻1 (𝑋,R) −→ 𝐻2 (𝑋,R),
that is, if 𝛼 ∧ 𝛽 = 0 for all (𝛼, 𝛽) ∈ 𝑉 ×𝑉 . We then set

𝑔(𝑋) = max
{
dim(𝑉) | 𝑉 ⊂ 𝐻1 (𝑋,R), 𝑈 is isotropic

}
.

We remark that the invariant 𝑔(𝑋) is an invariant for fundamental groups. Namely,
if 𝑌 is another compact Kähler manifold and 𝜋1 (𝑋) ≃ 𝜋1 (𝑌 ), then 𝑔(𝑋) = 𝑔(𝑌 )
(see [ABC+96,Py25]).

Theorem 1.15 (Siu). Let 𝑋 be a compact Kähler manifold and let 𝑔 ≥ 2 be an
integer. Then 𝜋1 (𝑋) admits the surface group 𝜋1 (𝐶𝑔) as a quotient if and only if
𝑋 admits a fibration onto a curve of genus 𝑔′ ≥ 𝑔. Moreover, if

𝜌 : 𝜋1 (𝑋) −→ 𝜋1 (𝐶𝑔)

is a surjective homomorphism with 𝑔 = 𝑔(𝑋), then there exists a fibration of 𝑋 onto
a curve of genus 𝑔 that induces 𝜌.
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Theorem 1.16 (Claudon). Let 𝑋 and 𝑌 be two compact Kähler surfaces that
are homeomorphic. Then 𝑋 has big fundamental groups if and only if 𝑌 has big
fundamental group.

Proof. Assume that 𝑋 does not have big fundamental group. If 𝜋1 (𝑋) is
finite, then 𝜋1 (𝑌 ) is also finite as they are homeomorphic. Therefore, we just
consider the case 𝜋1 (𝑋) is infinite. In this case, a theorem by Kollár [Kol93] and
Campana [Cam94] states that, after replacing 𝑋 by a finite étale cover, there is a
fibration 𝑓 : 𝑋 → 𝐶𝑔 onto a smooth projective curve 𝐶𝑔 of genus 𝑔 ≥ 1 such that
for a smooth general fiber 𝐹 of 𝑓 , Im[𝜋1 (𝐹) → 𝜋1 (𝑋)] is a finite group, and we
have the following short exact sequence

0 → 𝜋1 (𝐹) → 𝜋1 (𝑋) → 𝜋1 (𝐶𝑔) → 0.

This means that 𝜋1 (𝑋) is commensurable to a surface group 𝜋1 (𝐶𝑔). After replacing
𝑋 by a finite étale cover, 𝜋1 (𝑋) ≃ 𝜋1 (𝐶𝑔′ ) for another projective curve 𝐶𝑔′ of genus
𝑔′ ≥ 1. Hence we can replace 𝑌 by a finite étale cover such that 𝜋1 (𝑌 ) ≃ 𝜋1 (𝑋).

If 𝑔′ = 1, then 𝜋1 (𝑌 ) is abelian, and one can see that the Albanese map alb𝑌 :
𝑌 → Alb(𝑌 ) of 𝑌 is surjective, and Alb(𝑌 ) is an elliptic curve. Moreover, alb𝑌
induces an isomorphism of fundamental groups. Therefore, 𝑌 does not have big
fundamental groups, as for each fiber 𝐹 of alb𝑌 , we have Im[𝜋1 (𝐹) → 𝜋1 (𝑌 )] = {1}.

If 𝑔′ ≥ 2, by the above arguments together with Theorem 1.15, there exists
a fibration ℎ : 𝑌 → 𝐶′

𝑔′ to a projective curve 𝐶′
𝑔′ with genus 𝑔′ such that ℎ∗ :

𝜋1 (𝑌 ) → 𝜋1 (𝐶′
𝑔′ ) is an isomorphism. Therefore, for each fiber 𝐹 of ℎ, we have

Im[𝜋1 (𝐹) → 𝜋1 (𝑌 )] = {1}. This implies that 𝑌 does not have big funmental group.
The theorem is proved. □

However, it remains unknown whether Theorem 1.16 holds for smooth projec-
tive varieties of dimension greater than two. In [dOKR02], De Oliveira, Katzarkov,
and Ramachandran proposed the following conjecture; we also refer to the mono-
graph by Kollár [Kol95] for a discussion of related problems.

Conjecture 1.17. Let 𝑓 : 𝒳 → D be a smooth projective family over the unit disk.
If 𝑋0 := 𝑓 −1(0) has big 𝜋1, then any 𝑋𝑡 := 𝑓 −1(𝑡) also has big 𝜋1 for small 𝑡.

In [Cla10], Claudon proved Conjecture 1.17 for threefolds, assuming suitable
conjectures on the fundamental groups of orbifold surfaces.

In a joint work with Mese and Wang [DMW24], we prove Conjecture 1.17 in
the linear case.

Theorem 1.18 ( [DMW24]). Let 𝑓 : 𝒳 → D be a smooth projective family
over the unit disk. If there exists a big representation 𝜚 : 𝜋1 (𝑋0) → GL𝑁 (C), then
there exists a representation 𝜏 : 𝜋1 (𝒳) → GL𝑁 (C) such that for |𝑡 | sufficiently
small, the representation

𝜏𝑡 : 𝜋1 (𝑋𝑡 )
≃→ 𝜋1 (𝒳) → GL𝑁 (C)

is big. In particular, Conjecture 1.17 holds if 𝜋1 (𝑋0) is linear.

To prove Theorem 1.18, one must establish the deformation continuity of equi-
variant harmonic mappings into symmetric spaces or Euclidean buildings (cf. The-
orems 4.4 and 4.5 below).
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1.3. Hyperbolicity and fundamental groups: conjectures and main
results. In this subsection, we illustrate how the notions of big or large funda-
mental groups, introduced previously, play a pivotal role in characterizing the hy-
perbolicity of algebraic varieties. We then formulate a conjectural characterization
(cf. Conjecture 1.34) along these lines and present our results toward this conjec-
ture. Furthermore, we discuss our main results concerning the generalized Green–
Griffiths–Lang conjecture under suitable assumptions on the fundamental group.
The strategies for the proofs of the main theorems are detailed in § 3. These proofs
rely on the technical machinery developed for the reductive Shafarevich conjecture
in § 2.

1.3.1. Notions of hyperbolicity. The notion of hyperbolicity originates from Pi-
card’s great theorem and Picard’s little theorem on the range of an analytic func-
tion.

Theorem 1.19 (Little Picard theorem). Any holomorphic map 𝑓 : C → P1\{0, 1,∞}
must be constant.

This theorem is a significant strengthening of Liouville’s theorem which states
that the image of an entire non-constant function must be unbounded.

Theorem 1.20 (Great Picard theorem). Any holomorphic map 𝑓 : D∗ →
P1\{0, 1,∞} does not have essential singularity at the origin.

This is a substantial strengthening of the Casorati–Weierstrass theorem, which
only guarantees that the range of a holomorphic function defined over D∗ with essen-
tial singularity at the origin has image dense in C. One can see that Theorem 1.20
implies Theorem 1.19.

The complex algebraic varieties that have the similar properties as described
in Theorems 1.19 and 1.20 is called hyperbolic. Precisely, we have the following
definition.

Definition 1.21 (Hyperbolicity). Let 𝑋 be a complex quasi-projective variety.

(i) The variety 𝑋 is pseudo Picard hyperbolic if there is a proper Zariski
closed subset Ξ ⫋ 𝑋 such that any holomorphic map 𝑓 : D∗ → 𝑋 from the
punctured disk D∗ to 𝑋 with 𝑓 (D∗) ⊈ Ξ extends to a holomorphic map
from the disk D to a projective compactification 𝑋 of 𝑋.

(ii) We say that the variety 𝑋 is pseudo Brody hyperbolic if there exists a
proper Zariski closed subset Ξ ⫋ 𝑋 such that every non-constant holo-
morphic map 𝑓 : C → 𝑋 (an entire curve) has image contained in Ξ.

Note that every pseudo Picard hyperbolic variety is pseudo Brody hyperbolic.
While we conjecture the converse to hold true, as of now, we lack both a proof and
any counter-example of our conjecture.

In the algebraic setting, we introduce the following definition.

Definition 1.22 (Strongly of log general type). Let 𝑋 be a complex quasi-projective
variety. We say that 𝑋 is strongly of log general typea if there exists a proper Zariski
closed subset Ξ ⫋ 𝑋 such that every positive-dimensional closed subvariety of 𝑋 not
contained in Ξ is of log general type.

aThis terminology originates from Demailly [Dem15] in his strategy for the proof of Green-
Griffiths-Lang conjecture. Although our notion differs from Demailly’s original definition, we

retain the same terminology for its descriptive convenience.
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Figure 1. Hyperbolicity from different viewpoints
deg(𝐾
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Lang conjectured that a complex quasi-projective variety is strongly of log
general type if it is of log general type. To my knowledge, this conjecture remains
open even for complex surfaces in general.

1.3.2. Generalized Green-Griffiths-Lang conjecture. To characterize algebraic
varieties falling into the hyperbolic category, we will start by examining cases where
𝐶 is a smooth quasi-projective curve, with 𝐶 as its compactification, and 𝐷 repre-
senting the complement of 𝐶 within 𝐶. As illustrated in Figure 1, we can make the
following observations. From an algebraic–geometric perspective, hyperbolic curves
can be characterized as those whose logarithmic canonical bundle is positive. On
the other hand, from a topological viewpoint, hyperbolic curves are precisely those
with infinite and non-abelian fundamental groups.

It’s worth noting that the generalized Green-Griffiths-Lang conjecture aligns
with the algebraic geometric viewpoint, focusing on the positivity of the logarithmic
canonical bundle.

Conjecture 1.23 (Generalized Green-Griffiths-Lang conjecture). Let 𝑋 be a smooth
quasi-projective variety. Then the following properties are equivalent:

(i) 𝑋 is of log general type;
(ii) 𝑋 is pseudo-Picard hyperbolic;
(iii) 𝑋 is pseudo-Brody hyperbolic;
(iv) 𝑋 is strongly of log general type.

So far Conjecture 1.23 remains an open and challenging problem, even in situ-
ations where 𝑋 is a surface. We are fascinated by this conjecture due to its analogy
with the Bombieri-Lang conjecture concerning rational points.

Conjecture 1.24 (Bombieri-Lang). Let 𝑋 be a smooth projective variety defined
over a number field 𝑘. Then there exists a dense Zariski closed subset Ξ ⫋ 𝑋 such
that for all number field extensions 𝑘 ′ of 𝑘, the set of 𝑘 ′-rational points in 𝑋\Ξ is
finite.

1.3.3. Hyperbolicity of compactifications after taking finite étale coverings. It is
natural to ask why we are interested in the more general notion Picard hyperbolicity.
It indeed enjoys the following algebraicity property.

Proposition 1.25 ( [Den23]). Let 𝑋 be a smooth quasi-projective variety that is
pseudo Picard hyperbolic. Then any meromorphic map 𝑓 : 𝑌 d 𝑋 from another
smooth quasi-projective variety 𝑌 to 𝑋 with 𝑓 (𝑌 ) ⊄ Spp (𝑋) is rational.

A direct consequence of Proposition 1.25 is the following uniqueness of algebraic
structure of pseudo Picard hyperbolic varieties.
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Corollary 1.26 ( [Den23]). Let 𝑋 and 𝑌 be smooth quasi-projective varieties such
that there exists an analytic isomorphism 𝜑 : 𝑌an → 𝑋an of associated complex
spaces. Assume that 𝑋 is pseudo Picard hyperbolic. Then 𝜑 is an algebraic isomor-
phism. □

Let us discuss some examples of pseudo Picard hyperbolic varieties. A clas-
sical result due to Borel [Bor72] and Kobayashi-Ochiai [KO71] is that quotients
of bounded symmetric domains by torsion-free lattices are Picard hyperbolic. In
[Den23] we proved a similar result for algebraic varieties that admit a complex
variation of Hodge structures.

Theorem 1.27 ( [Den23, Theorem A]). Let 𝑋 be a smooth quasi-projective
variety. Assume that there is a C-VHS on 𝑋 whose period mapping is injective at
one point. Then 𝑋 is pseudo Picard hyperbolic. □

A similar result was discussed in [BB20].
In [Nad89], Nadel proved the nonexistence of certain level structures on abelian

varieties over complex function fields, which was refined by Aihara-Noguchi and
Rousseau in [AN91,Rou16]. Precisely, they proved the following theorem:

Theorem 1.28 ( [Nad89,Rou16]). Let 𝑋 be a smooth quasi-projective variety
such that 𝑋 = Ω/Γ where Ω is a bounded symmetric domain and Γ is an arithmetic
torsion free lattice acting on Ω. Then there exists a finite index subgroup Γ′ ⊂ Γ,
such that for the quasi-projective variety 𝑋 ′ := Ω/Γ′, its projective compactification
𝑋 ′ is Brody (moreover Kobayashi) hyperbolic modulo the boundary 𝑋 ′\𝑋 ′.

In [Den23], we obtained the following result which incorporates previous re-
sults by Nadel, Aihara-Noguchi and Rousseau.

Theorem 1.29 ( [Den23, Theorem B]). Let 𝑋 be a smooth quasi-projective
variety. Assume that there is a complex variation of Hodge structures on 𝑋 whose
period mapping is injective at one point. Then there exists a finite étale cover 𝑋 ′

of 𝑋 such that its projective compactification 𝑋 ′ is pseudo Picard hyperbolic and
strongly of general type.

The proofs of Theorems 1.27 and 1.29 in [Den23] are rather involved and rely
heavily on analytic techniques from non-abelian Hodge theory. Subsequently, in
[CD21], Cadorel and the author gave a simplified proof and, moreover, established
the following more general result.

Theorem 1.30 ( [CD21]). Let 𝑋 be a smooth quasi-projective variety. Assume
that there exists a harmonic bundle (𝐸, 𝜃, ℎ) on 𝑋 such that the Higgs field 𝜃 : 𝑇𝑋 →
End(𝐸) is injective at some point of 𝑋. Then there exists a finite étale cover 𝑋 ′ of
𝑋 whose projective compactification 𝑋 ′ is pseudo-Picard hyperbolic.

Nonetheless, Nevanlinna theory remains an essential ingredient in both works.
1.3.4. How Fundamental Groups Determine Hyperbolicity. It is natural to ask

whether there is a characterization of hyperbolicity of algebraic varieties in terms of
fundamental groups. As illustrated in Figure 1, such characterization requires that
the fundamental group 𝜋1 (𝑋) be must be infinite and non-abelian. However, this
topological requirement is insufficient, as demonstrated by non-hyperbolic varieties
whose fundamental groups meet this criterion.
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Example 1.31. Let 𝐶 be a projective curve of genus 𝑔 ≥ 2. The product variety
𝑋 = 𝐶 × P1 is clearly not pseudo Brody hyperbolic due to the P1 factor. Its fun-
damental group is 𝜋1 (𝑋) ≃ 𝜋1 (𝐶), which is both infinite and non-abelian, showing
the necessity of additional constraints.

The failure of hyperbolicity in Example 1.31 can be attributed to the fact that
the non-hyperbolic factor P1 trivializes the fundamental group in a relative sense.
This suggests that a useful condition must ensure that the fundamental group
remains infinite when restricted to relevant subvarieties. So having big fundamental
groups would indeed exclude the counterexample 𝐶 × P1.

However, simply having a big fundamental group is not enough, as shown by
varieties whose non-hyperbolicity stems from a different group-theoretic defect:

Example 1.32. Let 𝐶 be a projective curve of genus 𝑔 ≥ 2 and let 𝐸 be an elliptic
curve. The variety 𝑋 = 𝐶 × 𝐸 is not pseudo Brody hyperbolic. Its fundamental
group is 𝜋1 (𝑋) ≃ 𝜋1 (𝐶) × 𝜋1 (𝐸). Since 𝜋1 (𝐸) ≃ Z2, 𝜋1 (𝑋) is large and non-abelian.

The non-hyperbolicity of 𝑋 = 𝐶 × 𝐸 is tied to the presence of normal abelian
subgroup. More precisely, for any fixed point 𝑥 ∈ 𝐶, the subgroup corresponding
to the elliptic curve factor,

Im [𝜋1 ({𝑥} × 𝐸) → 𝜋1 (𝐶 × 𝐸)] ⊳ 𝜋1 (𝐶 × 𝐸),

is an infinite normal abelian subgroup of 𝜋1 (𝑋).Therefore, we should require that
fundamental groups are “highly non-abelian”.

Definition 1.33 (Semisimple Group). A finitely generated group 𝐺 is called semisim-
ple if every abelian normal subgroup of 𝐺 is finite.

The variety 𝑋 = 𝐶 × 𝐸 in Example 1.32 has fundamental group that is not
semisimple. In conclusion, to give the fundamental group characterization of vari-
eties with strong hyperbolicity, we propose the following conjecture:

Conjecture 1.34. Let 𝑋 be a quasi-projective normal variety. If there exists a
quotient 𝜚 : 𝜋1 (𝑋) ↠ 𝐺 such that 𝐺 is semisimple and 𝜚 is big in the sense defined
below, then 𝑋 is strongly of log general type and pseudo Picard hyperbolic.

We now define the precise requirement for the quotient map.

Definition 1.35. A quotient map 𝜚 : 𝜋1 (𝑋) ↠ 𝐺 is said to be big if, for every
closed irreducible positive-dimensional subvariety 𝑍 ⊂ 𝑋 passing through a very
general point, the image

𝜚 (Im [𝜋1 (𝑍norm) −→ 𝜋1 (𝑋)])

is an infinite subgroup of 𝐺.

In [CDY25b,DY25] together with Cadorel and Yamanoi, we proved Conjec-
ture 1.34 for linear quotients.

Theorem 1.36. Let 𝑋 be a complex quasi-projective normal variety and let 𝐺
be a semisimple algebraic group defined over an algebraically closed field 𝐾. If there
exists a big and Zariski dense representation 𝜚 : 𝜋1 (𝑋) → 𝐺 (𝐾), then:

(i) when char𝐾 = 0, for any 𝜎 ∈ Aut(C/Q), the Galois conjugate 𝑋𝜎 :=
𝑋 ×𝜎 C is pseudo Picard hyperbolic and strongly of log general type;
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(ii) when char𝐾 > 0, 𝑋 is pseudo Picard hyperbolic and strongly of log general
type.

In [CDY25b], we proved Theorem 1.36 in the case char𝐾 = 0, and in [DY25],
we treated the case of positive characteristic.

1.3.5. On GGL conjecture. We discuss the generalized Green-Griffiths-Lang
conjecture in this subsection. Conjecture 1.23 is known to hold for curves. However,
when dim 𝑋 ≥ 2, there has been only few progress. We summarize below four classes
of varieties for which Conjecture 1.23 has been established:

• Complex projective surfaces with big cotangent bundles, proved by Mc-
Quillan [McQ98], and later extended to quasi-projective surfaces with
big logarithmic cotangent bundles by El Goul [EG03].

• Subvarieties of abelian varieties, by the classical theorem of Bloch, Ochiai
and Kawamata, and more generally subvarieties of semi-abelian varieties,
by Noguchi [Nog81].

• Projective varieties of maximal Albanese dimension, by Kawamata [Kaw81]
and Yamanoi [Yam15a].

• General hypersurfaces in projective space P𝑛 (𝑛 ≥ 3) of sufficiently high
degree, proved in [DMR10] (based on the strategy of Siu [Siu04]), with
degree bounds subsequently improved in [Dar16,MT22,BK24,Cad24];
as well as complements of general hypersurfaces of high degree in P𝑛 (𝑛 ≥
2), proved in [Dar16,BD19], to mention only a few.

In [CDY25a], Cadorel, Yamanoi, and the author first established Conjecture 1.23
for quasi-projective varieties of maximal quasi-Albanese dimension. Our proof relies
primarily on Nevanlinna theory, thereby generalizing the result of [Yam15a] to
the non-compact setting. Building on the main result in [CDY25a], we further
established a non-abelian version in [CDY25b,DY25].

Theorem 1.37 ( [CDY25b,DY25]). Let 𝑋 be a quasi-projective variety. If
there exists a semisimple and big representation 𝜋1 (𝑋) → GL𝑁 (C), or a big repre-
sentation 𝜋1 (𝑋) → GL𝑁 (𝐾) for some field 𝐾 of positive characteristic, then Con-
jecture 1.23 holds for 𝑋.

In [CDY25b], we proved Theorem 1.37 in the case char𝐾 = 0, and in [DY25],
we addressed the case of positive characteristic. The case where 𝑋 is projective and
char𝐾 = 0 was also discussed in [Bru22] using different methods.

2. Non-Abelian Hodge Theories and the Shafarevich Conjecture

Let us mention that the techniques of non-abelian Hodge theory developed by
Simpson [Sim92] in the archimedean setting and by Gromov–Schoen [GS92] in the
non-archimedean setting were first recognized by Katzarkov [Kat97] as being appli-
cable to the study of Conjecture 1.5. Together with Ramachandran, he proved Con-
jecture 1.5 for projective surfaces with reductive fundamental group [KR98]. These
techniques were subsequently further developed by Eyssidieux [Eys04], and they
proved to be highly effective in establishing the conjecture in the linear case [EKPR12].

On the other hand, Zuo [Zuo96] and Yamanoi [Yam10] discovered that similar
methods can also be applied to questions of hyperbolicity for algebraic varieties.
More recently, Mese, Wang, and the author [DW24b,DW24a,DMW24] realized
that the techniques in studying the Shafarevich conjecture in [Eys04,EKPR12,
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DYK23,DY25] can be used to investigate the topology of algebraic varieties, as
discussed in § 1.2.

In this section, we review some recent progress on the Shafarevich conjecture
and outline several of the essential techniques involved in its proof, which are also
relevant to the other conjectures discussed in §§ 1.2 and 1.3. A particularly compre-
hensive survey is provided by Eyssidieux [Eys11], which we strongly recommend
to readers interested in this conjecture.

2.1. Conjecture and some histories. Let us recall an equivalent version of
Conjecture 1.5.

Conjecture 2.1 ( [Sha77]). The universal cover 𝑋 of a smooth projective variety
𝑋 is holomorphically convex.

We recall the definition of holomorphic convexity.

Definition 2.2. Let 𝑌 be a complex space. For any compact subset 𝐾 ⊂ 𝑌 , the
holomorphic hull of 𝐾 is defined as

𝐾 = 𝐾O(𝑌 ) =

{
𝑧 ∈ 𝑌 | | 𝑓 (𝑧) | ⩽ sup

𝑤∈𝐾
| 𝑓 (𝑤) |, ∀ 𝑓 ∈ O(𝑌 )

}
.

We say that 𝑌 is holomorphically convex if 𝐾 is compact for every compact subset
𝐾 ⊂ 𝑌 .

Furthermore, 𝑌 is called Stein if it is holomorphically convex and holomorphi-
cally separable (i.e., for any distinct points 𝑥, 𝑦 ∈ 𝑌 , there exists 𝑓 ∈ O(𝑌 ) such that
𝑓 (𝑥) ≠ 𝑓 (𝑦)).

We have the following criterion for the holomorphic convexity of complex
spaces.

Theorem 2.3 (Cartan-Remmert). A complex space 𝑌 is holomorphically con-
vex if and only if there exists a proper holomorphic fibration 𝑌 → 𝑆 over a Stein
space.

If the Shafarevich conjecture holds for 𝑋, one can show that there exists a
proper holomorphic fibration sh𝑋 : 𝑋 → Sh(𝑋) with the property that for any
subvariety 𝑍 ⊂ 𝑋, the image Im[𝜋1 (𝑍) → 𝜋1 (𝑋)] is finite if and only if sh𝑋 (𝑍) is a
point. Such a holomorphic map, if it exists, is called the Shafarevich morphism of
𝑋. More generally, we have

Definition 2.4 (Shafarevich morphism). Let 𝑋 be a quasi-projective normal vari-
ety. Let 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) be a representation where 𝐾 is any field. A dominant
holomorphic map sh𝜚 : 𝑋 → Sh𝜚 (𝑋) with general fibers connected is called the Sha-
farevich morphism associated with 𝜚 if, for any closed subvariety 𝑍 ⊂ 𝑋, the image
𝜚(Im[𝜋1 (𝑍) → 𝜋1 (𝑋)]) is finite if and only if sh𝜚 (𝑍) is a point.

We provide a brief historical overview of the developments surrounding the
Shafarevich conjecture. We note that the literature is vast, and the following list is
not exhaustive.

• Gurjar [Gur87] and Napier [Nap90] initiated this investigation.
• In 1993, Kollár [Kol93] and Campana [Cam94] independently constructed
a birational model of the Shafarevich morphism, known as the Shafarevich
map, for any variety 𝑋.
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• In 1998, Katzarkov and Ramachandran [KR98] established the Shafare-
vich conjecture for surfaces with reductive fundamental group, i.e. those
admitting an almost faithful semisimple representation 𝜋1 (𝑋) → GL𝑁 (C).
In the same work, they proved the holomorphic convexity of suitable in-
termediate Galois coverings. The latter result was recently extended by
Yuan Liu [Liu23] to the compact Kähler setting.

• In 2004, Eyssidieux [Eys04] proved the reductive Shafarevich conjecture.
A central and particularly deep aspect of his work is the discovery of
sufficient conditions ensuring the holomorphic convexity of certain Ga-
lois coverings, associated with Simpson’s absolutely constructible sub-
sets [Sim93b]. This result has had a substantial impact on complex
geometry: beyond resolving the reductive case, the techniques developed
by Eyssidieux have inspired numerous applications by the present author
and his collaborators in recent years, as will be discussed later in this
paper.

• Building on the foundational deformation theory of Deligne and Goldman-
Millson [GM88], Eyssidieux and Simpson [ES11] constructed a canonical
variation of mixed Hodge structure associated with the formal local ring
O𝜌 of the representation variety 𝑅(𝜋1 (𝑋),GL𝑁 ) at a point 𝜌 corresponding
to a C-VHS. This construction provides a crucial framework for the study
of the linear Shafarevich conjecture.

• In 2012, building upon the results in [Eys04,ES11], Eyssidieux, Katzarkov,
Pantev, and Ramachandran [EKPR12] completely proved the Linear
Shafarevich conjecture (cf. Theorem 1.6), representing a significant de-
velopment in the study of this conjecture.

• In 2015, based on [EKPR12], Campana, Claudon and Eyssidieux [CCE15]
proved the Linear Shafarevich conjecture for compact Kähler manifolds.

• In 2023, Yamanoi, Katzarkov, and the author [DYK23] extended the re-
ductive Shafarevich conjecture to the case of singular projective varieties.
Our work also introduced new perspectives in the proof and constructed
Shafarevich morphisms for quasi-projective varieties with reductive 𝜋1,
which were obtained independently by Brunebarbe [Bru23].

• In 2023, Green, Griffiths, and Katzarkov established the holomorphic con-
vexity of universal coverings of quasi-projective varieties whose partial Al-
banese map is proper. This result was subsequently reproved by Aguilar
and Campana in [AAC25] using different methods.

• In 2025, Yamanoi and the author [DY25] constructed the Shafarevich
morphism for quasi-projective normal varieties with linear fundamental
groups in positive characteristic. We also proved the Shafarevich conjec-
ture for projective normal surfaces in this setting.

• More recently, Bakker, Brunebarbe, and Tsimerman addressed the Sha-
farevich conjecture for quasi-projective varieties with linear fundamental
groups in their extensive work [BBT24].

2.2. Non-Abelian Hodge theory: archimedean setting. Non-abelian
Hodge theory explores the geometry of local systems on complex algebraic varieties.
The subject was initiated by the work of Siu [Siu80] and Sampson [Sam86] on har-
monic maps from Kähler manifolds to non-positively curved target spaces. A major
breakthrough came with the work of Corlette [Cor88] and Donaldson [Don87b],
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who proved the existence of equivariant harmonic maps associated with complex
semisimple local systems over compact Kähler manifolds. Building on this, Simpson
developed the full framework of non-abelian Hodge theory via Higgs bundles—a
notion that had also been studied earlier by Hitchin [Hit87] in the case of Rie-
mann surfaces. He discovered the amazing connection between the work of Don-
aldson [Don87a] and Uhlenbeck-Yau [UY86] and the work by Griffiths [Gri70],
Deligne, Schmid et. al. on the variation of Hodge structures [Sim88,Sim92].

The extension of the theory to the quasi-projective setting was initiated by
Simpson for curves [Sim90], and later completed by Mochizuki [Moc06,Moc07a,
Moc07b] in a monumental series of works spanning more than a thousand pages.
As a consequence, the theory in the archimedean setting (concerning complex local
systems) is now fully established.

In this subsection, we briefly recall a small portion of Simpson’s non-abelian
Hodge theory and its subsequent development by Mochizuki in the quasi-projective
setting, providing the minimal technical framework needed for the results discussed
in this paper.

2.2.1. The Simpson correspondence.

Definition 2.5 (Higgs bundle). A Higgs bundle on 𝑋 is a pair (𝐸, 𝜃) where 𝐸 is a
holomorphic vector bundle, and 𝜃 : 𝐸 → 𝐸 ⊗ Ω1

𝑋
is a holomorphic one form with

value in End(𝐸), called the Higgs field, satisfying 𝜃 ∧ 𝜃 = 0.

Let (𝐸, 𝜃) be a Higgs bundle over a complex manifold 𝑋. Suppose that ℎ is a
smooth hermitian metric of 𝐸 . Denote by ∇ℎ the Chern connection of (𝐸, ℎ), and
by 𝜃†

ℎ
the adjoint of 𝜃 with respect to ℎ. We write 𝜃† for 𝜃†

ℎ
for short if no confusion

arises. The metric ℎ is harmonic if the connection ∇ℎ + 𝜃 + 𝜃† is flat.

Definition 2.6 (Harmonic bundle). A harmonic bundle on 𝑋 is a Higgs bundle
(𝐸, 𝜃) endowed with a harmonic metric ℎ.

The notion of harmonic comes from the harmonic maps that are interpreted as
follows.

Let (𝑀, 𝑔) be a closed Riemannian manifold. Assume that there exists a rep-
resentation 𝜚 : 𝜋1 (𝑀) → GL𝑁 (C). It corresponds to a flat bundle (𝑉, 𝐷) on 𝑀.
Then for any smooth hermitian metric ℎ on 𝑉 , it corresponds to a 𝜚-equivariant
smooth map

𝑢ℎ : 𝑀 → GL𝑁 (C)/𝑈𝑁 .
Here note that GL𝑁 (C) acts on the Riemannian symmetric space 𝑆 := GL𝑁 (C)/𝑈𝑁
(which has non-positive sectional curvature). The main theorem by Corlette, proves
that there exists a smooth metric ℎ for 𝑉 such that 𝑢ℎ is energy minimizing (so-
called harmonic map), i.e. the energy

𝐸 (𝑢ℎ) =
∫
𝑋

|𝑑𝑢ℎ |2𝑑Vol𝑔

is the critical point. Such a harmonic map is unique up to some ambiguity. The
precise equation is given by

𝑑∗∇𝑑𝑢ℎ = 0.(2.6.1)

Here 𝑑𝑢ℎ ∈ Γ(𝑀,Ω1

𝑀
⊗ 𝑢∗

ℎ
𝑇𝑆), and

𝑑∇ : Ω𝑘
𝑀

⊗ 𝑢∗ℎ𝑇𝑆 → Ω𝑘+1
𝑀

⊗ 𝑢∗ℎ𝑇𝑆
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is exterior covariant derivative induced by the connection

∇ : 𝑢∗ℎ𝑇𝑆 → Ω1

𝑀
⊗ 𝑢∗ℎ𝑇𝑆

induced by canonical metric of 𝑇𝑆. Here 𝑇𝑆 is indeed the complexified vector bundle
𝑇C
𝑆
.
When (𝑀, 𝑔) happens to be a Kähler manifold (𝑋, 𝜔), Siu-Sampson formula

shows that 𝑢ℎ is moreover pluriharmonic, i.e.

𝜕∇𝑑
′𝑢ℎ = 0, 𝜕∇𝑑

′′𝑢ℎ = 0.(2.6.2)

here 𝑑𝑢ℎ = 𝑑′𝑢ℎ + 𝑑′′𝑢ℎ decompose according to (1, 0) and (0, 1)-parts of Ω1

𝑋
=

Ω
1,0

𝑋
⊕ Ω

0,1

𝑋
, and also 𝑑∇ = 𝜕∇ + 𝜕∇ also decomposes accordingly.

Let us see how the Higgs bundle structure comes. First note that the hermitian
metric ℎ gives rise to a decomposition for the flat connection 𝐷 of 𝑉 by

𝐷 = ∇ℎ +Φℎ,

where ∇ℎ is unitary, and Φℎ is self-adjoint. Therefore, by the flatness of 𝐷, we have

∇2
ℎ + [Φℎ,Φℎ] = 0

∇ℎΦℎ = 0(2.6.3)

Note that this holds for any choice of ℎ!
On the other hand, one can show that

Φℎ = 𝑑𝑢ℎ, ∇ = ∇ℎ(2.6.4)

The Siu-Sampson formula shows that

[Φ1,0
ℎ
,Φ

1,0
ℎ

] = 0.

Hence we have
∇2
ℎ = (∇2) (1,1) .

Let 𝐸 := 𝑢∗
ℎ
𝑇𝑆, that is a complex vector bundle (not yet a holomorphic one!). Since

∇ : 𝐸 → 𝐸 ⊗ Ω1

𝑀

is unitary, it follows that ∇0,1 gives rise to a complex structure for 𝐸 . By (2.6.2),
(2.6.4) and (2.6.3), we have

𝜕∇Φ
1,0
ℎ

= 0.(2.6.5)

Hence (𝐸, 𝜃, ℎ) := (𝐸, 𝜕∇ ,Φ1,0
ℎ
, ℎ) is a harmonic bundle on 𝑋. Since it is 𝜚-equivariant,

one can show that it descends to a harmonic bundle on 𝑋. In summary, one has

Theorem 2.7 (Corlette). Let (𝑋, 𝜔) be a compact Kähler manifold. A repre-
sentation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C) is reductive, if and only if there exists a harmonic
bundle (𝐸, 𝜃, ℎ) such that the monodromy representation ∇ℎ + 𝜃 + 𝜃∗ℎ is 𝜚.

I refer the reader to the survey articles [Lou20,DM23b,Mau15] for the results
mentioned above.

On the other hand, Simpson introduce the stability of Higgs bundles, and he
proved the following result.

Theorem 2.8 (Simpson). Let (𝑋, 𝜔) be a compact Kähler manifold and let
(𝐸, 𝜃) be a 𝜇𝜔-polystable Higgs bundle on 𝑋. If 𝑐1 (𝐸)∧{𝜔}𝑛−1 = 𝑐2 (𝐸)∧{𝜔}𝑛−2 = 0,
then there exists a harmonic metric ℎ for (𝐸, 𝜃).
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In other words, he established the one-to-one correspondence between semisim-
ple local systems on 𝑋, and the polystable Higgs bundles with vanishing Chern
classes. This is called the Simpson correspondence in the literature.

Remark 2.9. • While harmonic metric depends on the choice of the metric
on the Riemannian manifold, for Kähler manifolds, the pluriharmonic
metric is independent of the choice of the Kähler metric on 𝑋.

• The term non-abelian Hodge theory originates from the following distinc-
tion: classical Hodge theory concerns the cohomology of the constant sheaf
C on 𝑋, whereas non-abelian Hodge theory is related to the cohomology
of nontrivial local systems on 𝑋, whose monodromy groups are generally
non-abelian.

A straightforward application of Simpson’s theorem is the following.

Theorem 2.10 (Simpson). Let 𝑓 : 𝑋 → 𝑌 be a morphism of projective varieties,
where 𝑌 is smooth and 𝑋 is normal. For any reductive representation 𝜚 : 𝜋1 (𝑌 ) →
GL𝑁 (C), the pullback 𝑓 ∗𝜚 : 𝜋1 (𝑋) → GL𝑁 (C) is also reductive.

Proof. Let 𝜇 : 𝑍 → 𝑋 be a desingularization. Since 𝑋 is normal, the induced
homomorphism on fundamental groups

𝜇∗ : 𝜋1 (𝑍) −→ 𝜋1 (𝑋)
is surjective. Consequently, the image of the representation 𝑓 ∗𝜚 coincides with the
image of ( 𝑓 ◦ 𝜇)∗𝜚. Thus, 𝑓 ∗𝜚 is reductive if and only if ( 𝑓 ◦ 𝜇)∗𝜚 is reductive.
Therefore, after replacing 𝑋 with a desingularization, we may assume without loss
of generality that 𝑋 is smooth.

We now apply the Simpson correspondence. Let (𝐸, 𝜃, ℎ) be the harmonic bun-
dle on 𝑌 corresponding to the reductive representation 𝜚. The pullback ( 𝑓 ∗𝐸, 𝑓 ∗𝜃, 𝑓 ∗ℎ)
is also a harmonic bundle on 𝑋 corresponding to the representation 𝑓 ∗𝜚. By The-
orem 2.7, the existence of a harmonic metric implies that the associated represen-
tation 𝑓 ∗𝜚 is reductive. The theorem is proved. □

2.2.2. Complex Variation of Hodge structures. In [Sim88], Simpson discovered
that C-VHS in algebraic geometry is indeed a special case of harmonic bundles. Let
us recall the definition.

Definition 2.11. Let 𝑌 be a complex manifold. A C-VHS consists of (𝑉 =

⊕𝑝+𝑞=𝑟𝑉 𝑝,𝑞 ,∇, 𝑄) where (𝑉,∇) is a flat bundle and 𝑄 is a non-definite hermitian
form for 𝑉 such that

• 𝑉 = ⊕𝑝+𝑞=𝑟𝑉 𝑝,𝑞 is a direct sum of smooth vector bundles that is orthogonal
with respect to 𝑄,

• 𝑄 is ∇-parallel such that ℎ := (−1) 𝑝𝑄 |𝑉 𝑝,𝑞 is positively definite
• we have the Griffiths transversality:

∇ : 𝑉 𝑝,𝑞 → 𝐴0,1(𝑉 𝑝+1,𝑞−1) ⊕𝐴1 (𝑉 𝑝,𝑞) ⊕𝐴1,0(𝑉 𝑝−1,𝑞+1)
𝜃 𝐷 𝜃

Since 𝐷′′2 = 0, 𝐸 𝑝,𝑞 := (𝑉 𝑝,𝑞 , 𝐷′′) has a structure of holomorphic vector bundle
such that any smooth local section 𝑠 of 𝑉 𝑝,𝑞 is a holomorphic section of 𝐸 𝑝,𝑞 if and
only if 𝐷′′𝑠 = 0. The pair (𝐸 =

⊕
𝑝,𝑞 𝐸

𝑝,𝑞 , 𝜃) is then called a Hodge bundle, where

the
𝜃 : 𝐸 𝑝,𝑞 −→ 𝐸 𝑝−1,𝑞+1 ⊗ Ω1

𝑌
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satisfying the relation 𝜃 ∧ 𝜃 = 0, is the Higgs field. The Hodge decomposition is
orthogonal with respect to the Hermitian metric ℎ, which is referred to as the Hodge
metric. One can check that (⊕𝑝+𝑞=𝑟 , 𝐸 𝑝,𝑞 , 𝜃, ℎ) is a harmonic bundle.

Note that a Z-VHS originally arises geometrically as follows: let 𝑓 : 𝑋 → 𝑌

be a smooth projective family over a complex manifold 𝑌 endowed with a relative
ample line bundle 𝐿 → 𝑋. Then the primitive part of the higher direct image of
the constant sheaf C on 𝑋, denoted by 𝑅𝑘 𝑓∗ (C)prim, underlies a C-VHS defined by

©­«𝑅𝑘 𝑓∗ (C)prim ⊗C O𝑌
𝐶∞
≃

⊕
𝑝+𝑞=𝑘

𝑅𝑞 𝑓∗ (Ω𝑝

𝑋/𝑌 ),∇, 𝑄
ª®¬

where ∇ is the Gauss-Manin connection for 𝑅𝑘 𝑓∗ (C), and the sesquilinear form 𝑄

is determined by the Hodge-Riemann bilinear relations:

𝑄(𝛼, 𝛽) = 𝑖𝑝−𝑞
∫
𝑋𝑡

𝛼 ∧ 𝛽 ∧ 𝑐1 (𝐿𝑡 )dim𝑋𝑡−𝑘

for any 𝛼, 𝛽 ∈ 𝐻𝑘 (𝑋𝑡 )prim. Here 𝑋𝑡 denotes the fiber 𝑓
−1(𝑡) for each 𝑡 ∈ 𝑌 . Since the

C-VHS has an integral structure given by 𝑅𝑘 𝑓∗ (C) = 𝑅𝑘 𝑓∗ (Z) ⊗Z C, this constitutes
a Z-VHS. We will not verify the axioms of C-VHS here, but refer the reader to the
excellent textbook by Voisin [Voi02] for more details.

2.2.3. C∗-action on Higgs bundles. For any Higgs bundle (𝐸, 𝜃) on a compact
Kähler manifold 𝑌 and any 𝑡 ∈ C∗, we define the action by

𝑡.(𝐸, 𝜃) := (𝐸, 𝑡𝜃).
We shall use Theorems 2.7 and 2.8 to define such action on representation of 𝜋1 (𝑌 ).
Let 𝜚 : 𝜋1 (𝑌 ) → GL𝑁 (C) be a semisimple representation. Then there exists a
harmonic bundle (𝐸, 𝜃, ℎ) corresponding to 𝜚. By Simpson’s theorem, (𝐸, 𝜃) is 𝜇𝜔-
polystable with vanishing Chern classes. Note that (𝐸, 𝑡𝜃) is also 𝜇𝜔-polystable.
Therefore, we use Simpson’s theorem again to get a harmonic metric ℎ𝑡 for (𝐸, 𝑡𝜃).
Let 𝜚𝑡 : 𝜋1 (𝑌 ) → GL𝑁 (C) be the monodromy representation given by the flat
connection ∇𝑡 + 𝜃+ 𝜃ℎ𝑡 . In general, 𝜚𝑡 is not conjugate to 𝜚. However, one can show
that

Proposition 2.12 ( [Sim92]). The semisimple representation 𝜚 corresponds to a
C-VHS if and only if it is C∗-invariant, i.e. 𝜚𝑡 is conjugate to 𝜚 for any 𝑡 ∈ C∗.

Note that most of Simpson’s results, except those discussed in the next sub-
section, have been extended to the quasi-projective setting in a series of works by
Mochizuki [Moc06,Moc07a,Moc07b]. In particular, all of the results stated
above remain valid in the quasi-projective case.

2.2.4. Betti and Dolbeault Moduli spaces, rigid representation and ubiquity. In
this subsection, we discuss the Betti moduli spaces and rigid representations. Let
𝑋 be a smooth projective variety. We have an affine scheme Hom(𝜋1 (𝑋),GL𝑁 ) of
finite type defined over Z that represents the functor

𝑆 ↦→ Hom(𝜋1 (𝑋),GL𝑁 (𝑆))
for any ring 𝑆. The Betti moduli space 𝑀B (𝑋,GL𝑁 ) := Hom(𝜋1 (𝑋),GL𝑁 )//GL𝑁
is the GIT quotient of Hom(𝜋1 (𝑋),GL𝑁 ) by GL𝑁 , where GL𝑁 acts by conju-
gation. Note that it might be reducible while it is called variety. It is indeed
the GL𝑁 -character variety for the finitely generated group 𝜋1 (𝑋). Thus, such
quotient Hom(𝜋1 (𝑋),GL𝑁 ) → 𝑀B (𝑋,GL𝑁 ) is surjective. For any representation
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𝜚 : 𝜋1 (𝑋) → GL𝑁 (C), it is a C-point in Hom(𝜋1 (𝑋),GL𝑁 ) (C). We write [𝜚] to
denote its image in 𝑀B (𝑋,GL𝑁 ). We list a crucial property of GL𝑁 -character
varieties that will be used in this paper. For further background and more com-
prehensive accounts, we refer the reader to the survey of Sikora [Sik12] and to the
monograph of Lubotzky–Magid [LM85].

Let 𝐾 be any algebraically closed field of characteristic zero. By [Sik12, Theo-
rem 30], the orbit of any representation 𝜚 in Hom(𝜋1 (𝑋),GL𝑁 ) (𝐾) is closed if and
only if 𝜚 is semisimple. Two semisimple representations 𝜚, 𝜚′ are conjugate under
GL𝑁 (𝐾) if and only if [𝜚] = [𝜚′].

In [Sim94a,Sim94b], Simpson constructed the moduli spaces of Higgs bundles
with vanishing Chern classes on a smooth projective variety 𝑋. Fix a positive
integer 𝑁 and a polarization 𝐿 on 𝑋. Simpson constructed a quasi-projective scheme
𝑀Dol (𝑋, 𝑁) parametrizing 𝜇𝐿-semistable Higgs bundles (𝐸, 𝜃) of rank 𝑁 on 𝑋 with
vanishing Chern classes. The points of the moduli space correspond to equivalence
classes defined as follows:

• Let (𝐸, 𝜃) be a 𝜇𝐿-semistable Higgs bundle with vanishing Chern classes.
Let Gr(𝐸, 𝜃) denote the graded object associated to a Jordan–Hölder fil-
tration of (𝐸, 𝜃). Then Gr(𝐸, 𝜃) is a polystable Higgs bundle with van-
ishing Chern classes. It is locally free by [Sim92, Theorem 2]. This
result also holds in the compact Kähler setting (see the note by the au-
thor [Den21]); however, it fails if the condition on the vanishing of Chern
classes is dropped.

• Two 𝜇𝐿-semistable Higgs bundles (𝐸1, 𝜃1) and (𝐸2, 𝜃2) with vanishing
Chern classes are called Jordan-equivalent if there exists an isomorphism
between Gr(𝐸1, 𝜃1) and Gr(𝐸2, 𝜃2).

Theorem 2.13 ( [Sim94a]). Let 𝑋 be a smooth projective variety. The points
of 𝑀Dol (𝑋, 𝑁) (C) correspond to Jordan equivalence classes of 𝜇𝐿-semistable Higgs
bundles of rank 𝑁 with vanishing Chern classes. Moreover, there is a real analytic
isomorphism between 𝑀Dol (𝑋, 𝑁) (C) and 𝑀B (𝑋,GL𝑁 ) (C). Moreover, the C∗-action
on 𝑀Dol (𝑋, 𝑁) is given by (𝐸, 𝜃) ↦→ (𝐸, 𝑡𝜃) for any 𝑡 ∈ C∗ is algebraic.

For any Higgs bundle (𝐸, 𝜃), consider the characteristic polynomial of 𝜃 defined by
det(𝜆𝐼 − 𝜃) = 𝜆𝑁 +∑𝑁

𝑖=1 𝑎𝑖𝜆
𝑁−𝑖, where 𝑎𝑖 ∈ 𝐻0 (𝑋, Sym𝑖Ω𝑋).

Definition 2.14. The map 𝑀Dol (𝑋, 𝑁) → ⊕𝑘≥1𝐻0 (𝑋,Ω𝑘
𝑋
) given by

(𝐸, 𝜃) ↦→ (𝑎1, . . . , 𝑎𝑁 )
is called the Hitchin morphism.

Proposition 2.15 ( [Sim94b]). The Hitchin morphism 𝑀Dol (𝑋, 𝑁) → ⊕𝑘≥1𝐻0 (𝑋,Ω𝑘
𝑋
)

is algebraic, and proper.

Based on his theorem, he estbalished the following striking results.

Lemma 2.16. The limit lim𝑡→0 𝑡.(𝐸, 𝜃) exists, that corresponds to a C-VHS.

Proof. Note that the inverse image of the Hitchin morphism of the origin,
corresponds to Higgs bundles with nilpotent 𝜃 (including C-VHS). The image of
𝑡.(𝐸, 𝜃) under the Hitchin morphism converges to the origin if 𝑡 → 0. Since the
Hitchin morphism is proper, the limit exists. It is easy to see that the limit is
C∗-invariant, and thus it corresponds to a C-VHS. □
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We then apply the real analytic isomorphism 𝑀Dol (𝑋, 𝑁) (C) → 𝑀B (𝑋,GL𝑁 ) (C)
to obtain the C∗-action on 𝑀B (𝑋, 𝑁), that is a continuous action, but in general
not algebraic! Therefore, we have the following theorem.

Proposition 2.17 ( [Sim91]). In any connected component of 𝑀B (𝑋, 𝑁), there
exists a representation that underlies a C-VHS. Moreover, any representation can
deforms to a C-VHS.

This result is called Simpson’s ubiquity theorem in the literature.

Definition 2.18. A semisimple representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C) is rigid if
the irreducible component of 𝑀B (𝑋,GL𝑁 ) (C) containing [𝜚] is zero dimensional,
otherwise it is called non-rigid. □

For a rigid semisimple representation 𝜚, by above arguments any continuous
deformation 𝜚′ : 𝜋1 (𝑋) → GL𝑁 (C) of 𝜚 which is semisimple is conjugate to 𝜚 under
GL𝑁 (C). By Proposition 2.17, we have the following result.

Corollary 2.19. Any rigid representation corresponds to a C-VHS. □

But the drawback is that such C-VHS in general does not have discrete mon-
odromy. That motivates us to consider the non-archimedean representations in
§ 2.3.

We note that most of the results in this subsection, except for Proposition 2.17
and Corollary 2.19, remain open in the quasi-projective setting. In particular,
extending Lemma 2.16 to the quasi-projective case would be a very interesting
problem.

2.3. Non-abelian Hodge theory: non-archimedean cases. While Simpson–
Mochizuki’s theory deals exclusively with complex local systems, all of the prob-
lems discussed so far naturally lead to the study of 𝑝-adic local systems, as well as
F𝑝 ((𝑡))-local systems, on complex algebraic varieties, as we will see shortly. More
precisely, given a Zariski dense representation

𝜚 : 𝜋1 (𝑋) −→ 𝐺 (𝐾),
where 𝐺 is a reductive algebraic group defined over a non-archimedean local field 𝐾,
Gromov–Schoen [GS92] proved that, when 𝑋 is compact Kähler, there exists a 𝜚-

equivariant harmonic map from the universal cover 𝑋 to the Bruhat–Tits building
Δ(𝐺)𝐾 , a CAT(0) space on which 𝐺 (𝐾) acts by isometries. We refer the reader
to [BH99] for the definition of CAT(0) spaces.

More recently, Brotbek, Daskalopoulos, Mese, and the author [BDDM22,
DM26] extended the Gromov–Schoen theorem to the quasi-projective setting. In
this subsection, we present this theorem and explain how one can extract algebraic
and analytic structures from it.

2.3.1. Bruhat-Tits buildings. Note that 𝑆 := GL𝑁 (C)/𝑈𝑁 is the symmetric
space associated with GL𝑁 (C). It satisfies the following properties:

• it is non-positively curved (indeed, it has non-positive sectional curvature);
• GL𝑁 (C) acts transitively on 𝑆;
• the stabilizer of any point under this action is a compact subgroup.

If 𝐾 is a non-archimedean local field, such a näıve construction is no longer avail-
able. Indeed, a maximal compact subgroup of GL𝑁 (𝐾) is conjugate to GL𝑁 (O𝐾 ),
which is an open subgroup. Consequently, the näıve quotient GL𝑁 (𝐾)/GL𝑁 (O𝐾 )



TOPOLOGY & HYPERBOLICITY OF ALGEBRAIC VARIETIES 23

is discrete and lacks interesting geometric structure. A natural and rich analogue of
the symmetric space in the non-archimedean setting is provided by the Bruhat–Tits
building.

Let 𝐾 be a non-archimedean local field of characteristic zero, and let 𝐺 be a
reductive algebraic group defined over 𝐾. There exists a Euclidean building asso-
ciated with 𝐺, called the (enlarged) Bruhat–Tits building and denoted by Δ(𝐺)𝐾
(or simply Δ(𝐺)). It is a non-positively curved space on which 𝐺 (𝐾) acts strongly
transitively by isometries, and the stabilizer of any point under this action is a
precompact subgroup of 𝐺 (𝐾). We refer the reader to [KP23,Rou23] for the
definition and basic properties of Bruhat–Tits buildings.

Associated with Δ(𝐺)𝐾 is a pair (𝑉,𝑊), where 𝑉 is a real Euclidean space
endowed with its Euclidean metric, and 𝑊 is an affine Weyl group acting on 𝑉 .
More precisely, 𝑊 is a semidirect product

𝑊 = 𝑇 ⋊𝑊𝑣 ,

where 𝑊𝑣 is the vectorial Weyl group, a finite group generated by reflections of 𝑉 ,
and 𝑇 is a group of translations of 𝑉 .

For any apartment 𝐴 in Δ(𝐺), there exists an isomorphism 𝑖𝐴 : 𝐴 → 𝑉 , which
is called a chart. For two charts 𝑖𝐴1

: 𝐴1 → 𝑉 and 𝑖𝐴2
: 𝐴2 → 𝑉 , if 𝐴1 ∩ 𝐴2 ≠ ∅, it

satisfies the following properties:

(a) 𝑌 := 𝑖𝐴2
(𝑖−1
𝐴1
(𝑉)) is convex.

(b) There is an element 𝑤 ∈ 𝑊 such that 𝑤 ◦ 𝑖𝐴1
|𝐴1∩𝐴2

= 𝑖𝐴2
|𝐴1∩𝐴2

.

Figure 2. Bruhat-Tits building for SL2 (Q𝑝) with 𝑝 = 2.

2.3.2. Harmonic mapping to Euclidean building. We first present our result on
the extension of Gromov-Schoen’s theorem.

Theorem 2.20 ( [BDDM22,DM26]). Let 𝑋 be a smooth quasi-projective
variety and let 𝐺 be a reductive group defined over a non-archidemean local field 𝐾.
Let Δ(𝐺) be the Bruhat-Tits building of 𝐺. Denote by 𝜋𝑋 : 𝑋 → 𝑋 the universal
covering map. If 𝜚 : 𝜋1 (𝑋) → 𝐺 (𝐾) is a Zariski dense representation, then the
following statements hold:

(i) There exists a 𝜚-equivariant pluriharmonic map 𝑢 : 𝑋 → Δ(𝐺) with loga-
rithmic energy growth.

(ii) 𝑢 is harmonic with respect to any Kähler metric on 𝑋.



24 YA DENG

(iii) Let 𝑓 : 𝑌 → 𝑋 be a morphism from a smooth quasi-projective variety 𝑌 .

Denote by 𝑓 : 𝑌 → 𝑋 the lift of 𝑓 between the universal covers of 𝑌 and
𝑋. Then the 𝑓 ∗𝜚-equivariant map 𝑢 ◦ 𝑓 : 𝑌 → Δ(𝐺) is pluriharmonic and
has logarithmic energy growth.

For the definitions appearing in the theorem, we refer the reader to [BDDM22]
or to [DM26, Section 2] for more details. The above theorem was established
in [BDDM22, Theorem A] by Brotbek, Daskalopoulos, Mese, and the author in
the case where 𝐺 is semisimple, building upon previous work of Daskalopoulos and
Mese [DM23a,DM24,DM23c]. Subsequently, building on [BDDM22], Mese
and the author extended the result to the general reductive case in [DM26, The-
orem A]. As we will see later, this extension provides a crucial building block
both for studying the hyperbolicity of (non-compact) algebraic varieties [CDY25b]
and for addressing the linear Shafarevich conjecture in the quasi-projective case
[DYK23,DY25,Bru23,BBT24].

By Theorem 2.20, there exists a 𝜚-equivariant harmonic mapping with logarith-
mic energy growth 𝑢 : 𝑋 → Δ(𝐺). Moreover, such a map 𝑢 is pluriharmonic.

We denote by R(𝑢) the regular set of the harmonic map 𝑢. Explicitly, this is
the set of points 𝑥 ∈ 𝑋 for which there exists an open neighborhood Ω𝑥 of 𝑥 such
that 𝑢(Ω𝑥) ⊂ 𝐴 for some apartment 𝐴.

Since 𝐺 (𝐾) acts transitively on the apartments of Δ(𝐺) and 𝑢 is 𝜚-equivariant,
the set R(𝑢) is the pullback of an open subset of 𝑋. By abuse of notation, we denote
this subset of 𝑋 also by R(𝑢).

In [GS92], Gromov and Schoen prove a deep regularity theorem: the Hausdorff
codimension of the complement 𝑋 \ R(𝑢) is at least two. In [DM26], Mese and the
author proved that 𝑋 \ R(𝑢) is contained in a proper Zariski closed subset of 𝑋.

It has long been a major open problem whether such regularity theorems for
harmonic maps into Euclidean buildings hold for non-locally compact Euclidean
buildings (e.g., the Bruhat-Tits building of GL𝑁 (𝐾), where 𝐾 = Q((𝑡))). This was
only recently resolved in a celebrated work by Breiner, Dees, and Mese [BDM24],
who established the Gromov-Schoen regularity theorem for harmonic maps into
non-locally compact Euclidean buildings. This is one of the most significant break-
throughs in this subject over the past two decades.

Let me also mention that, in [DMV11], Daskalopoulos and Mese proved a
similar regularity theorem for harmonic maps into hyperbolic buildings, which is
another highly interesting development in this subject.

We now fix orthogonal coordinates (𝑥1, . . . , 𝑥𝑁 ) for 𝑉 . Define smooth real func-
tions on Ω𝑥 by setting

𝑢𝐴,𝑖 := 𝑥𝑖 ◦ 𝑖𝐴 ◦ 𝑢,(2.20.1)

where 𝑖𝐴 : 𝐴 → 𝑉 is the chart defined in the previous subsection. The plurihar-
monicity of 𝑢 implies that 𝜕𝜕𝑢𝐴,𝑖 = 0 for each 𝑖; hence, 𝜕𝑢𝐴,𝑖 is a holomorphic
1-form. However, the multiset of holomorphic 1-forms {𝜕𝑢𝐴,1, . . . , 𝜕𝑢𝐴,𝑁 } depends
on the choice of the chart and the apartment containing 𝑢(Ω𝑥). We can resolve this
ambiguity by considering the multiset of holomorphic 1-forms:

{𝜕𝑥𝑖 ◦ 𝑤 ◦ 𝑖𝐴 ◦ 𝑢}𝑖=1,...,𝑁 ;𝑤∈𝑊𝑣 .
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One can verify (see, e.g., [BDDM22,CDY25b]) that this multiset of holomorphic
1-forms is invariant under the action of 𝑊𝑣 and is independent of the choice of the
chart. They glue together to define a multivalued 1-form on R(𝑢), denoted by 𝜂𝑢.
Since 𝑢 is 𝜚-equivariant, one can verify that 𝜂𝑢 descends to a splitting multivalued
1-form on R(𝑢).

Furthermore, using the Lipschitz property of the harmonic map, one can show
that 𝜂𝑢 extends to a multivalued 1-form on all of 𝑋. Since 𝑢 has logarithmic energy
growth, in [BDDM22] we can prove that 𝜂𝑢 extends to a multivalued section

for the logarithmic cotangent bundle Ω
𝑋
(log 𝐷), where 𝑋 is a smooth projective

compactification for 𝑋 and 𝐷 := 𝑋\𝑋 is a simple normal crossing divisor. We refer
the reader to [CDY25b, §3.1] for the formal definition of multivalued sections of a
holomorphic vector bundle. Less formally, we have

Definition 2.21 (Multivalued section). Let 𝑋 be a complex manifold and let 𝐸 be
a holomorphic vector bundle on 𝑋. A multivalued section 𝜂 on 𝑋 is a formal sum∑𝑚
𝑖=1 𝑛𝑖Γ𝑖, where each 𝑛𝑖 ∈ Z>0 and each Γ𝑖 is an irreducible closed subvariety of 𝐸

such that the natural projection Γ𝑖 → 𝑋 is a finite surjective morphism.

In [DM26], Mese and the author established the uniqueness of harmonic maps
in a suitable setting. In particular, we showed that 𝜂𝑢 is independent of the choice
of 𝑢. Therefore, we denote this form by 𝜂𝜚. It also extends to a multivalued section

of the logarithmic bundle Ω
𝑋
(log 𝐷) → 𝑋.

Definition 2.22 (Multivalued 1-form). The multivalued 1-form 𝜂𝜚 on 𝑋 described
above is called the multivalued 1-form associated with 𝜚.

On the other hand, we can construct an analytic object associated with 𝜚 as
follows. For the open neighborhood Ω𝑥 of 𝑥 as above, we define a smooth, real,
semi-positive (1, 1)-form by

√
−1

𝑁∑︁
𝑖=1

𝜕𝑢𝐴,𝑖 ∧ 𝜕𝑢𝐴,𝑖 .(2.22.1)

One can verify that this closed real semi-positive (1, 1)-form is independent of the
choice of 𝐴 and the orthogonal coordinates (𝑥1, . . . , 𝑥𝑁 ) for 𝑉 (see [DW24a, §3]).
Moreover, it is invariant under the 𝜋1 (𝑋)-action. Consequently, it descends to a
smooth, real, closed, semi-positive (1, 1)-form on R(𝑢). The Lipschitz property of 𝑢
and elliptic regularity imply that this form extends to a positive closed (1, 1)-current
𝑇𝜚 on 𝑋 with continuous potential.

Definition 2.23 (Canonical current). The closed positive (1, 1)-current 𝑇𝜚 on 𝑋

defined above is called the canonical current of 𝜚.

Remark 2.24. Although the 𝜚-equivariant harmonic map 𝑢 may not be unique,
the uniqueness result in [DM26] implies that both 𝜂𝜚 and 𝑇𝜚 are independent of
the choice of 𝑢.

2.3.3. Spectral covering and Katzarkov-Eyssidieux reduction map. Directly ma-
nipulating such multivalued 1-forms in algebraic geometry is often impractical. A
standard approach is to construct a finite (generally ramified) covering 𝜋 : 𝑋sp → 𝑋

such that 𝜋∗𝜂 becomes a set of global logarithmic 1-forms on 𝑋sp, with an explicitly
describable ramification locus. We recall the main result from [CDY25b, Propo-
sition 3.1].
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Proposition 2.25 (Spectral covering). Let 𝜂𝜌 be the multivalued 1-form described

in Definition 2.22. There exists a finite Galois cover 𝜋 : 𝑋sp → 𝑋 with Galois group
𝐻, together with a multiset of holomorphic sections

{𝜔1, . . . , 𝜔𝑚} ⊂ 𝐻0 (𝑋sp, 𝜋∗Ω
𝑋
(log 𝐷))

that is 𝐻-invariant. Furthermore, the ramification locus of 𝜋 is contained in⋃
𝜔𝑖≠𝜔 𝑗

{𝜔𝑖 − 𝜔 𝑗 = 0}.

Such Galois covering 𝜋 is called the spectral covering of 𝑋 associated with 𝜚.
Building on Proposition 2.25 and the properties of harmonic mappings into

Euclidean buildings, we derive the following theorem.

Theorem 2.26 ( [CDY25b, Theorem E]). Let 𝑋 be a quasi-projective nor-
mal variety and let 𝜌 : 𝜋1 (𝑋) → GL𝑛 (𝐾) be a representation, where 𝐾 is a non-
archimedean local field. Then there exists a dominant morphism 𝑠𝜌 : 𝑋 → 𝑆𝜌 to a
normal projective variety with connected general fibers, such that for any irreducible
closed subvariety 𝑍 ⊂ 𝑋, the following properties are equivalent:

(i) The image 𝜌(Im[𝜋1 (𝑍norm) → 𝜋1 (𝑋)]) is bounded;
(ii) The image 𝜌(Im[𝜋1 (𝑍) → 𝜋1 (𝑋)]) is bounded;
(iii) The image 𝑠𝜌 (𝑍) is a point;
(iv) The restriction of the canonical current 𝑇𝜌 |𝑍 defined in Definition 2.23 is

trivial.
(v) The restriction of the multivalued 1-form 𝜂𝜌 |𝑍 defined in Definition 2.22

is trivial.

We call the map 𝑠𝜌 the Katzarkov-Eyssidieux reduction map for 𝜌. When 𝑋 is
compact Kähler, such a map 𝑠𝜌 was constructed by Katzarkov and Eyssidieux in
[Eys04]. It plays an important role in the construction of the Shafarevich morphism
in the next subsection.

2.4. Construction of the Reductive Shafarevich Morphism. Let 𝑋 be
a smooth quasi-projective variety. We will construct the Shafarevich morphism
sh𝑋 : 𝑋 → Sh(𝑋) in this subsection when 𝜋1 (𝑋) is reductive, i.e., there exists a
semisimple representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C) such that ker 𝜚 is finite (we say 𝜚
is almost faithful). We begin with the following definition.

Definition 2.27 (Infinite monodromy at infinity). Let 𝑋 be a quasi-projective

normal variety and let 𝑋 be a projective compactification of 𝑋. We say a subset
𝑀 ⊂ 𝑀B (𝑋, 𝑁) (C) has infinite monodromy at infinity if for any holomorphic map
𝛾 : D → 𝑋 with 𝛾−1(𝑋 \ 𝑋) = {0}, there exists a reductive representation 𝜚 :
𝜋1 (𝑋) → GL𝑁 (C) such that [𝜚] ∈ 𝑀 and the restriction 𝛾∗𝜚 : 𝜋1 (D∗) → GL𝑁 (C)
has infinite image.

A simple consequence is the following:

Lemma 2.28. If 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C) underlies a C-VHS L with discrete mon-
odromy, then after replacing 𝑋 by a partial compactification, the C-VHS extends,
and the associated period map 𝑝 : 𝑋 → 𝒟/Γ is proper, where 𝒟 is the period do-
main and Γ is the monodromy group of L. In this case, the Shafarevich morphism
sh𝜚 : 𝑋 → Sh𝜚 (𝑋) of 𝜚 is the Stein factorization of 𝑝.
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Proof. For the first claim, we refer the reader to [Gri70]. Note that in this
case, the monodromy representation of the extended L has infinite monodromy at
infinity. The proof relies on the hyperbolicity of the period domain and a standard
application of the Ahlfors-Schwarz lemma. Note that the period domain of L has
the form 𝒟 = 𝐺/𝑉 , where 𝐺 is a real reductive group and 𝑉 ⊂ 𝐺 is a compact
subgroup (see [CMP17]).

Let 𝑍 ⊂ 𝑋 be a closed subvariety and let 𝜇 : 𝑌 → 𝑍 be a desingularization.
If 𝑝(𝑍) is a point 𝑃, then for the lift of 𝑝 to the Galois covering 𝑝 : 𝑋𝜚 → 𝒟 asso-

ciated with ker 𝜚, the image 𝑝(𝑋) is also a point 𝑃 ∈ 𝒟. The image 𝜚(Im[𝜋1 (𝑍) →
𝜋1 (𝑋)]) is contained in the stabilizer of 𝑃, which is a conjugate 𝑉 ′ of 𝑉 , and hence
is compact. On the other hand, since L has discrete monodromy,

𝜚(Im[𝜋1 (𝑍) → 𝜋1 (𝑋)]) ⊂ Γ ∩𝑉 ′.

This is a discrete subgroup of a compact group, and is therefore finite.
Conversely, if 𝜚(Im[𝜋1 (𝑍) → 𝜋1 (𝑋)]) is finite, then the C-VHS 𝜇∗L on 𝑌

has finite monodromy. After replacing 𝑌 by a finite étale cover, the monodromy
becomes trivial. By the uniqueness of the C-VHS structure underlying a local
system (see [Sch73]), 𝜇∗L must be the trivial C-VHS. In particular, its period

mapping 𝑝𝑌 : 𝑌 → 𝒟 is constant. Since we have the commutative diagram

𝑌 𝒟

𝑋

𝑝𝑌

𝑝

it follows that 𝑝(𝑍) is a point. The lemma is proved. □

Remark 2.29. It is expected that the Shafarevich morphism of a quasi-projective
variety, when it exists, is algebraic. In [Som78], Sommese proved that Sh𝜚 (𝑋)
appearing in Lemma 2.28 is properly bimeromorphic to a quasi-projective vari-
ety, using Hörmander’s 𝐿2–techniques. More recently, Bakker, Brunebarbe, and
Tsimerman [BBT23] established that Sh𝜚 (𝑋) is indeed algebraic, thereby con-
firming a longstanding conjecture of Griffiths.

If 𝜚 is not a C-VHS with discrete monodromy, the approach in [DYK23],
following the strategy initiated in [Eys04], attempts to find a fibration such that
the restriction of 𝜚 to each fiber is a direct sum of a Z-VHS.

We now introduce an important morphism 𝑠fac : 𝑋 → 𝑆Fac(𝑋). We first start
with the following lemma.

Lemma 2.30 ( [DYK23, Lemma 1.28]). Let 𝑉 be a smooth quasi-projective variety
and let ( 𝑓𝜆 : 𝑉 → 𝑆𝜆)𝜆∈Λ be a family of morphisms into quasi-projective varieties 𝑆𝜆.
Then there exist a quasi-projective normal variety 𝑆∞ and a morphism 𝑓∞ : 𝑉 → 𝑆∞
such that

• 𝑓∞ is dominant and has connected general fibers,
• for every subvariety 𝑍 ⊂ 𝑉 , 𝑓∞ (𝑍) is a point if and only if 𝑓𝜆 (𝑍) is a point
for every 𝜆 ∈ Λ, and

• there exist 𝜆1, . . . , 𝜆𝑛 ∈ Λ such that 𝑓∞ : 𝑉 → 𝑆∞ is the Stein factorization
of

( 𝑓1, . . . , 𝑓𝑛) : 𝑉 → 𝑆𝜆1 × · · · 𝑆𝜆𝑛 .
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The above 𝑓∞ : 𝑋 → 𝑆∞ will called the simultaneous Stein factorization for ( 𝑓𝜆 :
𝑉 → 𝑆𝜆)𝜆∈Λ. □

Definition 2.31. Fix some 𝑁 ∈ N. Consider the set Υ := {𝜏 : 𝜋1 (𝑋) → GL𝑁 (𝐾)},
where 𝜏 ranges over all semisimple representations with 𝐾 being any non-archimedean
local field of characteristic zero. Consider the set of Katzarkov-Eyssidieux reduc-
tions {𝑠𝜏}𝜏∈Υ. We take a simultaneous Stein factorization of all these 𝑠𝜏 , denoted
by 𝑠fac : 𝑋 → 𝑆Fac(𝑋).

Note that 𝑠fac : 𝑋 → 𝑆Fac(𝑋) is a dominant morphism with connected general
fibers such that for any 𝜏 ∈ Υ, we have a factorization

𝑋 𝑆Fac(𝑋)

𝑆𝜏

𝑠fac

𝑠𝜏

Moreover, for any subvariety 𝑍 of 𝑋, if 𝑠𝜏 (𝑍) is a point for each 𝜏 ∈ Υ, then 𝑠fac (𝑍)
is also a point.

This factorization possesses the following crucial property.

Proposition 2.32 ( [DYK23, Proposition 3.10]). Let 𝑋 be a smooth quasi-projective
variety, and let 𝑓 : 𝑌 → 𝑋 be a morphism from a smooth quasi-projective variety
𝑌 such that 𝑠fac ◦ 𝑓 (𝑌 ) is a point. Let {𝜏𝑖 : 𝜋1 (𝑋) → GL𝑁 (C)}𝑖=1,2 be reductive
representations such that [𝜏1] and [𝜏2] are in the same geometric connected com-
ponent of 𝑀 (C). Then 𝑓 ∗𝜏1 is conjugate to 𝑓 ∗𝜏2. In other words, 𝑗 (𝑀B (𝑋, 𝑁))
is zero-dimensional, where 𝑗 : 𝑀B (𝑋, 𝑁) → 𝑀B (𝑌, 𝑁) is the natural morphism of
character varieties induced by 𝑓 .

The main idea of the proof proceeds as follows. Consider the morphism between
character varieties 𝑀B (𝑋, 𝑁) → 𝑀B (𝑌, 𝑁). If the image of 𝑀B (𝑋, 𝑁) under this
morphism, denoted by 𝑀, is not zero-dimensional, then its closure is a Zariski closed
subset of the affine scheme, and is hence non-compact. However, one can show
that for any fixed non-archimedean local field 𝐾 of characteristic zero, the set of
bounded representations 𝜏 : 𝜋1 (𝑌 ) → GL𝑁 (𝐾) is a compact subset of 𝑀B (𝑌, 𝑁) (𝐾).
Therefore, there exists some 𝜏 : 𝜋1 (𝑋) → GL𝑁 (𝐾) such that 𝑓 ∗𝜏 is unbounded.
By the construction of 𝑠fac, this is impossible. Hence, we conclude that 𝑀 is zero-
dimensional.

In [DYK23], we proved the following crucial result.

Proposition 2.33 ( [DYK23, Proposition 3.13]). There exists a C-VHS L on 𝑋

such that for any morphism 𝑓 : 𝑌 → 𝑋 from a smooth quasi-projective variety 𝑌
to 𝑋, if 𝑠fac ◦ 𝑓 (𝑌 ) is a point, then for any semisimple representation 𝜚 : 𝜋1 (𝑋) →
GL𝑁 (C), 𝑓 ∗𝜚 is a direct factor of the C-VHS 𝑓 ∗L, which has discrete monodromy.

Note that L itself might not have discrete monodromy.

Proof. Fix a geometric connected component 𝑀 of 𝑀B (𝑋, 𝑁). Since 𝑀B (𝑋, 𝑁)
and Hom(𝜋1 (𝑋),GL𝑁 ) are defined over Z, we can choose a semisimple representa-
tion 𝜏 : 𝜋1 (𝑋) → GL𝑁 (Q) such that [𝜏] ∈ 𝑀 (Q). As 𝜋1 (𝑋) is finitely generated,
there exists a number field 𝑘 such that 𝜏 : 𝜋1 (𝑋) → GL𝑁 (𝑘).



TOPOLOGY & HYPERBOLICITY OF ALGEBRAIC VARIETIES 29

Let Ar(𝑘) be the set of all archimedean places of 𝑘, with 𝑤1 being the iden-
tity map. By the ubiquity theorem (Proposition 2.17), and its extension to the
quasi-projective setting by Mochizuki [Moc06], for any 𝑤 ∈ Ar(𝑘), there exists a
reductive representation 𝜏VHS

𝑤 : 𝜋1 (𝑋) → GL𝑁 (C) that underlies a C-VHS, such
that [𝜏VHS

𝑤 ] is in the same connected component of [𝜏𝑤]. Let L be the C-VHS
defined as the direct sum ⊕𝑤∈Ar(𝑘 )𝜏

VHS
𝑤 .

By Theorem 2.10, both 𝑓 ∗𝜏𝑤 and 𝑓 ∗𝜏VHS
𝑤 are reductive. Then, by Proposi-

tion 2.32, 𝑓 ∗𝜏VHS
𝑤 is conjugate to 𝑓 ∗𝜏𝑤. Hence, each 𝑓 ∗𝜏𝑤 underlies a C-VHS.

Let 𝑣 be any non-archimedean place of 𝑘 and let 𝑘𝑣 be the non-archimedean
completion of 𝑘 with respect to 𝑣. Let 𝜏𝑣 : 𝜋1 (𝑋) → GL𝑁 (𝑘𝑣) be the representation
induced by 𝜏. By the definition of 𝑠fac, it follows that 𝑓 ∗𝜏𝑣 (𝜋1 (𝑍)) is bounded.
Therefore, we have a factorization

𝑓 ∗𝜏 : 𝜋1 (𝑍) → GL𝑁 (O𝑘).

Note that the embedding GL𝑁 (O𝑘) → ∏
𝑤∈Ar(𝑘 ) GL𝑁 (C) has a discrete image

by [Zim84, Proposition 6.1.3]. It follows that for the product representation∏
𝑤∈Ar(𝑘 )

𝑓 ∗𝜏𝑤 : 𝜋1 (𝑍) →
∏

𝑤∈Ar(𝑘 )
GL𝑁 (C),

the image is discrete.
Since 𝑓 ∗𝜏𝑤 is conjugate to 𝑓 ∗𝜏VHS

𝑤 for each 𝑤 ∈ Ar(𝑘), it follows that 𝑓 ∗L has
discrete monodromy. If [𝜚] and [𝜏] both belong to 𝑀, then 𝑓 ∗𝜚 is conjugate to
𝑓 ∗𝜏, and hence 𝑓 ∗𝜚 appears as a direct factor of 𝑓 ∗L. Note that the local system
L is chosen so as to be associated with 𝑀.

Repeating this construction for each geometrically connected component of
𝑀B (𝑋, 𝑁), and taking the direct sum of the resulting C-VHS, we obtain the desired
C-VHS. The proposition follows. □

We now turn to the construction of the Shafarevich morphism of 𝑋 when 𝜋1 (𝑋)
is reductive. In [DYK23, Proposition 3.19], it is shown that after replacing 𝑋 by
an étale cover, there exists a partial compactification such that 𝜚 extends to a
representation with infinite monodromy at infinity. Let L be the C-VHS from
Proposition 2.33 and let 𝑝 : 𝑋 → 𝒟 be the associated period map. Consider the
holomorphic map

Φ : 𝑋 → 𝒟 × 𝑆Fac(𝑋)
𝑥 ↦→ (𝑝(𝑥), 𝑠fac ◦ 𝜋𝑋 (𝑥)),

where 𝜋𝑋 : 𝑋 → 𝑋 is the universal covering map. Using Proposition 2.33 together
with Lemma 2.28, one can deduce that each connected component of the fiber of Φ
is compact. Then, by Theorem 2.34 below, Φ factors through a proper holomorphic
fibration

sh
𝑋
: 𝑋 → Sh(𝑋)

onto a normal complex space Sh(𝑋). One can prove that Sh(𝑋) does not contain
any compact closed subvariety of positive dimension. Hence, the 𝜋1 (𝑋)-action on
𝑋 maps fibers of sh

𝑋
to fibers, thereby inducing an action on Sh(𝑋). This action

is properly discontinuous, and sh
𝑋
is equivariant with respect to it. We take the

quotient of sh
𝑋
to obtain a proper holomorphic fibration sh𝑋 : 𝑋 → Sh(𝑋) such
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that we have the commutative diagram

𝑋 𝑋

Sh(𝑋) Sh(𝑋).

sh
𝑋 sh𝑋

One can show that sh𝑋 : 𝑋 → Sh(𝑋) is the Shafarevich morphism of 𝑋.
We need the following generalized Stein factorization proved by Henri Cartan

in [Car60, Theorem 3].

Theorem 2.34. Let 𝑋 and 𝑆 be complex spaces and let 𝑓 : 𝑋 → 𝑆 be a holo-
morphic map. Suppose that 𝑋 is normal and that every connected component 𝐹 of
a fiber of 𝑓 is compact. Then the set 𝑌 of connected components of the fibers of 𝑓
can be endowed with the structure of a normal complex space such that 𝑓 factors
through the natural map 𝑒 : 𝑋 → 𝑌 , which is a proper holomorphic fibration. □

Remark 2.35. The proof presented here is technically different from that of
[Eys04] in the compact case, although we follow the essential ideas introduced by
Eyssidieux. In [Eys04], Eyssidieux studies representations 𝜋1 (𝑋) → GL𝑁 (𝑘 ((𝑡)))
over non-archimedean fields, where 𝑘 is a number field, arising from closed curves
𝐶 ⊂ Hom(𝜋1 (𝑋),GL𝑁 ). Since 𝑘 ((𝑡)) is not locally compact, the Gromov–Schoen
regularity theorem was not available at that time. In this setting, Eyssidieux used
reduction modulo 𝑝 arguments to work with representations 𝜋1 (𝑋) → GL𝑁 (F𝑞 ((𝑡)))
in order to factor through non-rigidity. For integrality issues, he must further con-
sider representations 𝜋1 (𝑋) → GL𝑁 (𝐾), where 𝐾 is a finite extension of some Q𝑝.
This makes the proof substantially more involved.

The advantage of our construction of 𝑠fac is that it allows us to treat non-rigidity
and integrality simultaneously, as we have seen in Proposition 2.33. Moreover, it is
a significant simplification that we only work with local fields of characteristic zero.

When the faithful representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C) is not reductive and 𝑋
is projective, one must invoke the deep results of Eyssidieux and Simpson [ES11]
on the construction of suitable tautological representations arising from variations
of mixed Hodge structures in order to study the Shafarevich conjecture. We omit
the details here and refer the reader to [EKPR12] for a comprehensive treatment.

2.5. Shafarevich morphism in positive characteristic. The previous sub-
section constructed the Shafarevich morphism for smooth quasi-projective varieties
𝑋 assuming the representation of the fundamental group is reductive. In this sub-
section, we outline the construction of the Shafarevich morphism by Yamanoi and
the author [DY25] for the case where there exists an almost faithful representation
𝜌 : 𝜋1 (𝑋) → GL𝑁 (𝐾), where 𝐾 is a field of characteristic 𝑝 > 0.

2.5.1. A lemma on finite groups.

Lemma 2.36 ( [DY25, Lemma 3.1]). Let 𝐾 be an algebraically closed field of
positive characteristic and let Γ be a finitely generated group. Let 𝜚 : Γ → GL𝑁 (𝐾)
be a representation such that its semisimplification has finite image. Then 𝜚(Γ) is
finite.

Proof. Since the semisimplification 𝜚𝑠𝑠 of 𝜚 has finite image, we can replace
Γ by a finite index subgroup such that 𝜚𝑠𝑠 (Γ) is trivial. Therefore, some conjugate
𝜎 of 𝜚 has image in the subgroup U𝑁 (𝐾) consisting of all upper-triangular matrices
in GL𝑁 (𝐾) with 1’s on the main diagonal.
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Note U𝑁 (𝐾) admits a central normal series whose successive quotients are
isomorphic to G𝑎,𝐾 . We remark that a finitely generated subgroup of G𝑎,𝐾 is
a finite group, for 𝐾 has positive characteristic. By [ST00, Proposition 4.17],
any finite index subgroup of a finitely generated group is also finitely generated.
Consequently, 𝜎(Γ) admits a central normal series whose successive quotients are
finitely generated subgroups of G𝑎,𝐾 , which are all finite groups. It follows that
𝜎(Γ) is finite. The lemma is proved. □

2.5.2. Character varieties in positive characteristic. Recall that the variety of
𝑁-dimensional linear representations of 𝜋1 (𝑋) in characteristic zero is represented
by an affine Z-scheme 𝑅(𝑋, 𝑁) of finite type. Namely, given a commutative ring 𝐴,
the set of 𝐴-points of 𝑅(𝑋, 𝑁) is:

𝑅(𝑋, 𝑁) (𝐴) = Hom(𝜋1 (𝑋),GL𝑁 (𝐴)).
Let 𝑝 be a prime number. Consider 𝑅(𝑋, 𝑁)F𝑝

:= 𝑅(𝑋, 𝑁) ×SpecZ SpecF𝑝 and note
that the general linear group over F𝑝, denoted by GL(𝑁, F𝑝), acts on 𝑅(𝑋, 𝑁)F𝑝

by conjugation. Using Seshadri’s extension of geometric invariant theory quotients
for schemes of arbitrary field [Ses77, Theorem 3], we can take the GIT quotient
of 𝑅(𝑋, 𝑁)F𝑝

by GL(𝑁, F𝑝), denoted by 𝑀B (𝑋, 𝑁)F𝑝
. Then 𝑀B (𝑋, 𝑁)F𝑝

is also an
affine F𝑝-scheme of finite type. For any algebraically closed field 𝐾 of characteristic
𝑝, the 𝐾-points 𝑀B (𝑋, 𝑁)F𝑝

(𝐾) is identified with the conjugacy classes of semi-
simple representations 𝑋 → GL𝑁 (𝐾).

2.5.3. Shafarevich morphism in positive characteristic.

Theorem 2.37 ( [DY25, Theorem 3.9]). Let 𝑋 be a smooth quasi-projective
variety. Assume that there exists an almost faithful representation 𝜌 : 𝜋1 (𝑋) →
GL𝑁 (𝐾), where 𝐾 is a field of characteristic 𝑝 > 0. The Shafarevich morphism
sh𝑋 : 𝑋 → Sh(X) of 𝑋 is obtained through the simultaneous Stein factorization 𝑠∞ :
𝑋 → 𝑆∞ (𝑋) of the reductions {𝑠𝜏 : 𝑋 → 𝑆𝜏}𝜏∈Υ, where Υ consists of all reductive
representations with 𝐾 a non-archimedean local field of characteristic 𝑝, and 𝑠𝜏 :
𝑋 → 𝑆𝜏 is the Katzarkov-Eyssidieux reduction map defined in Theorem 2.26.

Proof. For simplicity, write 𝑅 = 𝑅(𝑋, 𝑁)F𝑝
and 𝑀 = 𝑀B (𝑋, 𝑁)F𝑝

. Let 𝑓 :
𝑌 → 𝑋 be a morphism from another smooth quasi-projective variety. In the same
vein as Proposition 2.32, we have the following result.

Claim 2.38. If 𝑠∞◦ 𝑓 (𝑌 ) is a point, then ℎ(𝑀) is zero-dimensional, where ℎ : 𝑀 →
𝑀B (𝑌, 𝑁)F𝑝

is the natural morphism induced by 𝑓 .

Proof. Assume by contradiction that ℎ(𝑀) has a positive dimensional com-
ponent. Then we can find any irreducible affine curve 𝑇 ⊂ 𝑅 defined over F𝑝, such
that its image in 𝑀B (𝑌, 𝑁)F𝑝

under the composite morphism

Φ : 𝑅 → 𝑀
ℎ→ 𝑀B (𝑌, 𝑁)F𝑝

is non a point. Take 𝐶 as the compactification of the normalization 𝐶 of 𝑇 , and let
{𝑃1, . . . , 𝑃ℓ } = 𝐶 \ 𝐶. There exists 𝑞 = 𝑝𝑛 for some 𝑛 ∈ Z>0 such that 𝐶 is defined
over F𝑞 and 𝑃𝑖 ∈ 𝐶 (F𝑞) for each 𝑖. By the universal property of the representation
scheme 𝑅, 𝐶 gives rise to a representation 𝜚𝐶 : 𝜋1 (𝑋) → GL𝑁 (F𝑞 [𝐶]), where F𝑞 [𝐶]
is the coordinate ring of 𝐶. Consider the discrete valuation 𝑣𝑖 : F𝑞 (𝐶) → Z defined

by 𝑃𝑖, where F𝑞 (𝐶) is the function field of 𝐶. Let �F𝑞 (𝐶)𝑣𝑖 be the completion of

𝐹𝑞 (𝐶) with respect to 𝑣𝑖. Then we have the isomorphism
(�F𝑞 (𝐶)𝑣𝑖 , 𝑣𝑖 ) ≃ (

F𝑞 ((𝑡)), 𝑣
)
,



32 YA DENG

where
(
F𝑞 ((𝑡)), 𝑣

)
is the formal Laurent field of F𝑞 with the valuation 𝑣 defined by

𝑣(∑+∞
𝑖=𝑚 𝑎𝑖𝑡

𝑖) = min{𝑖 | 𝑎𝑖 ≠ 0}. Let 𝜚𝑖 : 𝜋1 (𝑋) → GL𝑁 (F𝑞 ((𝑡))) be the extension of

𝜚𝐶 with respect to �F𝑞 (𝐶)𝑣𝑖 .
By our definition of 𝑠∞, and the assumption that 𝑠∞ ◦ 𝑓 (𝑌 ) is a point, and

Theorem 2.26, 𝑓 ∗𝜚𝑖 (𝜋1 (𝑋)) is bounded for each 𝑖. Thus after we replace 𝑓 ∗𝜚𝑖 by
some conjugate, we have 𝑓 ∗𝜚𝑖 (𝜋1 (𝑋)) ⊂ GL𝑁 (F𝑞 [[𝑡]]), where the F𝑞 [[𝑡]] is the ring
of integers of F𝑞 ((𝑡)), i.e.

F𝑞 [[𝑡]] := {
+∞∑︁
𝑖=0

𝑎𝑖𝑡
𝑖 | 𝑎𝑖 ∈ F𝑞}.

For any matrix 𝐴 ∈ GL𝑁 (𝐾), we denote by 𝜒(𝐴) = 𝑇𝑁 + 𝜎1 (𝐴)𝑇𝑁−1 + · · · + 𝜎𝑁 (𝐴)
its characteristic polynomial. Since 𝑓 ∗𝜚𝑖 (𝜋1 (𝑋)) ⊂ GL𝑁 (F𝑞 [[𝑡]]) for each 𝑖, it
follows that 𝜎𝑗 ( 𝑓 ∗𝜚𝑖 (𝛾)) ∈ F𝑞 [[𝑡]] for each 𝑖. Therefore, by the definition of 𝜚𝑖,
𝑣𝑖
(
𝜎𝑗 ( 𝑓 ∗𝜚𝐶 (𝛾))

)
≥ 0 for each 𝑖. It follows that 𝜎𝑗 ( 𝑓 ∗𝜚𝐶 (𝛾)) extends to a regular

function on 𝐶, which is thus constant. This implies that for any two representations
𝜂1 : 𝜋1 (𝑋) → GL𝑁 (𝐾1) and 𝜂2 : 𝜋1 (𝑋) → GL𝑁 (𝐾2) such that char𝐾1 = char𝐾2 =

𝑝 and 𝜂𝑖 ∈ 𝐶 (𝐾𝑖), we have 𝜒( 𝑓 ∗𝜂1 (𝛾)) = 𝜒( 𝑓 ∗𝜂2 (𝛾)) for each 𝛾 ∈ 𝜋1 (𝑌 ). In
other words, 𝜂1 and 𝜂2 has the same characteristic polynomial. It follows that
[ 𝑓 ∗𝜂1] = [ 𝑓 ∗𝜂2] by the Brauer-Nesbitt theorem. Hence Φ(𝑇) is a point. We obtain
a contradiction. □

Since 𝑅 is defined over F𝑝, there exists some representation 𝜂 : 𝜋1 (𝑋) →
GL𝑁 (F𝑝) such that 𝜂 are in the same geometric connected component of 𝜚. Since
𝜋1 (𝑋) is finitely generated, it follows that 𝜂(𝜋1 (𝑋)) is finite. Let 𝑓 : 𝑌 → 𝑋 be as
in Claim 2.38. By Claim 2.38, we have

[ 𝑓 ∗𝜂] = [ 𝑓 ∗𝜚] .
Therefore, the semisimplification ( 𝑓 ∗𝜂)𝑠𝑠 of 𝑓 ∗𝜂 and the semisimplifcation ( 𝑓 ∗𝜚)𝑠𝑠
of 𝑓 ∗𝜚 are conjugate. By virtue of Lemma 2.36, we conclude that 𝑓 ∗𝜚(𝜋1 (𝑌 )) is
finite. As 𝜚 is almost faithful, it follows that

Im[𝜋1 (𝑌 ) → 𝜋1 (𝑋)]
is finite.

On the other hand, if 𝑔 : 𝑍 → 𝑋 be a morphism such that 𝑠∞ ◦ 𝑔(𝑍) is not a
point, by Theorem 2.26, there exists some 𝜏 ∈ Υ such that 𝑔∗𝜏 is unbounded, thus
𝑔∗𝜏(𝜋1 (𝑍)) has infinite image. This proves that 𝑠∞ is the Shafarevich morphism of
𝑋. □

Remark 2.39. As noted in Theorem 2.37, the Shafarevich morphism in posi-
tive characteristic relies solely on Katzarkov-Eyssidieux reductions. Furthermore,
by virtue of Lemma 2.36, the linear case can be handled without additional dif-
ficulty. This implies that while the problem in positive characteristic is in some
sense simpler, it also exhibits a less rich structure than the characteristic zero case.
Consequently, the Shafarevich conjecture for projective varieties whose fundamen-
tal groups admit a faithful representation into GL𝑁 (𝐾) with char𝐾 > 0 remains
open, with only the case of surfaces having been proven in [DY25].

It is worth noting that in [DYK23,DY25] we establish the existence of the
Shafarevich morphism in a more general setting, without assuming that the funda-
mental group of 𝑋 is linear. More precisely, we prove the following.
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Theorem 2.40 ( [DYK23,DY25]). Let 𝑋 be a normal quasi-projective variety,
and let 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) be a representation, where 𝐾 is an arbitrary field.
If char𝐾 = 0, we additionally assume that 𝜚 is reductive. Then the Shafarevich
morphism associated with 𝜚, denoted by sh𝜚 : 𝑋 → Sh𝜚 (𝑋), exists. □

We refer the interested reader to [DYK23,DY25] for further details.
2.5.4. An application to Esnault’s conjecture. A intriguing question by Esnault

asks whether a complex projective variety with infinite fundamental group must
admit non-trivial symmetric differentials. This question was first answered affir-
matively by Brunebarbe, Klingler, and Totaro [BKT13] in the case where there
exists a representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾), over an arbitrary field 𝐾, such that
𝜚(𝜋1 (𝑋)) is infinite.

More recently, Brotbek, Daskalopoulos, Mese, and the author [BDDM22] ex-
tended this result to the quasi-projective setting.

Theorem 2.41 ( [BDDM22, Theorem B]). Let 𝑋 be a smooth quasi-projective
variety. If there exists a repersentation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) for any field 𝐾 such
that 𝜚(𝜋1 (𝑋)) is infinite. Then for some 𝑘 ∈ N, we have

𝐻0 (𝑋, Sym𝑘Ω
𝑋
(log 𝐷)) ≠ 0,

where 𝑋 is a smooth projective compactification, such that 𝐷 = 𝑋\𝑋 is a simple
normal crossing divisor.

Our approach relies on the theorem on the existence of 𝜚-equivariant harmonic
maps to Euclidean buildings (see Theorem 2.20). We now briefly sketch the proof,
which differs slightly from the one presented in [BDDM22] (though ideas are
exactly the same).

Proof of Theorem 2.41 (sketch). The existence of logarithmic symmet-
ric differentials is preserved under finite étale covers. Therefore, throughout the
proof, we may freely replace 𝑋 by a finite étale cover.

Case 1: char𝐾 = 0.
We may assume that 𝐾 = C. Let 𝜎 be the semisimplification of 𝜚.

Case 1.1: 𝜎 has finite image.
After replacing 𝑋 by a finite étale cover, the representation 𝜚 becomes unipo-

tent. Its image then admits a filtration whose successive quotients are abelian.
Consequently, there exists an abelian representation of 𝜋1 (𝑋) with infinite image.
This implies that 𝐻1 (𝑋,C) is infinite-dimensional.

Recall that

𝐻1 (𝑋,C) = 𝐻0 (𝑋,Ω
𝑋
(log 𝐷)

)
⊕ 𝐻0,1(𝑋).

Hence 𝐻0
(
𝑋,Ω

𝑋
(log 𝐷)

)
≠ 0.

Case 1.2: 𝜎 has infinite image.

Case 1.2.1: For every representation 𝜏 : 𝜋1 (𝑋) → GL𝑁 (𝐾), where 𝐾 is a non-
archimedean local field of characteristic zero, the image of 𝜏 is bounded.

In this case, the factorization map 𝑠fac : 𝑋 → 𝑆Fac(𝑋) is constant. By Propo-
sition 2.33, 𝜎 appears as a direct factor of a complex variation of Hodge structure
L with discrete monodromy. Since 𝜎 has infinite image, it follows that the mon-
odromy of L is infinite.
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By Lemma 2.28, the associated period map 𝑝 : 𝑋 → 𝒟/Γ has positive-
dimensional image. Let 𝑍 be a desingularization of the closure of 𝑝(𝑋). Using cur-
vature properties of period domains in the horizontal direction [Gri70], Brunebarbe
and Cadorel [BC20] proved that 𝑍 has a big logarithmic cotangent bundle. In par-
ticular, 𝑍 admits many logarithmic symmetric differentials. Pulling them back to
𝑋 yields the desired conclusion.

Case 1.2.2: There exists a representation 𝜏 : 𝜋1 (𝑋) → GL𝑁 (𝐾), where 𝐾 is a
non-archimedean local field of characteristic zero, whose image is unbounded.

By Theorem 2.26, there exists a nontrivial multivalued logarithmic 1-form 𝜂𝜏 .
Taking local products of 𝜂𝜏 , one obtains logarithmic symmetric differentials on
a Zariski open subset of 𝑋. One then shows that these extend to logarithmic
symmetric differentials on the pair (𝑋, 𝐷).
Case 2: char𝐾 = 𝑝 > 0.

By the proof of Theorem 2.37, it follows that there exists an unbounded repre-
sentation

𝜏 : 𝜋1 (𝑋) → GL𝑁
(
F𝑞 ((𝑡))

)
,

where 𝑞 = 𝑝ℓ for some ℓ ∈ N. Otherwise, the character variety 𝑀B (𝑋, 𝑁)F𝑝
would

be zero-dimensional, and it would follow from Lemma 2.36 that 𝜚 has finite image,
contradicting the assumption. We then apply the same argument as in Case 1.2.2
to conclude that 𝑋 admits a non-trivial logarithmic symmetric differential. □

Remark 2.42. When 𝑋 is projective and 𝐾 = C, the original argument in [BKT13]
is a beautiful application of non-abelian Hodge theory. We briefly recall their proof.

If the semisimplification 𝜚ss has finite image, the argument proceeds exactly
as above. We may therefore assume that 𝜚 is semisimple with infinite image.
Suppose, by contradiction, that 𝑋 admits no nontrivial symmetric differentials.
Then, by Proposition 2.15, the Dolbeault moduli space 𝑀Dol (𝑋, 𝑁) is compact.
By Theorem 2.13, there exists an analytic isomorphism between 𝑀B (𝑋, 𝑁) and
𝑀Dol (𝑋, 𝑁), and hence 𝑀B (𝑋, 𝑁) is also compact. Since 𝑀B (𝑋, 𝑁) is affine, it
follows that it is zero-dimensional. Consequently, every semisimple representation
𝜋1 (𝑋) → GL𝑁 (C) is rigid, and in particular 𝜚 is rigid. By Corollary 2.19, 𝜚
underlies a C-variation of Hodge structure. However, such a C-VHS may a priori
have non-discrete monodromy.

Since 𝑀B (𝑋, 𝑁) is defined over Q, after replacing 𝜚 by a conjugate we may
assume that it is defined over a number field 𝑘. Let 𝑣 be a non-archimedean place
of 𝑘, and let 𝑘𝑣 denote the completion of 𝑘 at 𝑣. We denote by

𝜚𝑣 : 𝜋1 (𝑋) −→ GL𝑁 (𝑘𝑣)
the induced representation. If 𝜚𝑣 is unbounded for some non-archimedean place
𝑣, then the same argument as in Case 1.2.2 yields the existence of a nontrivial
logarithmic symmetric differential on 𝑋, contradicting our assumption.

Hence, we may assume that for every non-archimedean place 𝑣 of 𝑘, the repre-
sentation 𝜚𝑣 is bounded; this property is usually referred to as the integrality of 𝜚.
By the same argument as in Proposition 2.33, it follows that 𝜚 is a direct sum of
a C-variation of Hodge structure L with discrete and infinite monodromy. Apply-
ing the argument of Case 1.2.1, we conclude that 𝑋 admits nontrivial symmetric
differentials, which yields a contradiction.
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The theorem of [BKT13] is in fact more general, as it also applies to the
compact Kähler case. In this setting, one does not have a satisfactory theory of
analytic morphisms between the moduli spaces 𝑀B (𝑋, 𝑁) and 𝑀Dol (𝑋, 𝑁). Nev-
ertheless, Klingler [Kli13] observed that the analytic gauge-theoretic arguments
of [Sim92] suffice to show that the absence of symmetric differentials still forces
𝑀B (𝑋, 𝑁) to be zero-dimensional. This idea also underlies the proof of the first
version of [BDDM22].

Remark 2.43. It is worth noting that Simpson proposed in [Sim92] a celebrated
conjecture on the integrality of rigid local systems on smooth complex projective
varieties, which was proved by himself and Corlette in [CS08] for rank two local
systems. A major breakthrough on this conjecture was achieved by Esnault and
Groechenig [EG18,EG20], who proved Simpson’s conjecture for cohomologically
rigid local systems. Esnault also pointed out to me that, if one knows that 𝑀B (𝑋, 𝑁)
is zero-dimensional, then their arguments still apply and imply the integrality of
arbitrary rigid local systems.

2.6. Holomorphic convexity. In the previous subsections, we constructed
the Shafarevich morphism for smooth quasi-projective varieties under the assump-
tion that the fundamental group is reductive or linear in positive characteristic.
However, this construction offers no insight into the holomorphic convexity of the
universal covering of 𝑋 when 𝑋 is compact.

While the techniques developed above suffice for applications to the linear
Chern–Hopf–Thurston conjecture (Theorem 1.8), the proof of the linear case of
Kollár’s conjecture (Theorem 1.12) relies crucially on auxiliary results established
in the study of the Shafarevich conjecture, notably in [Eys04,DYK23,EKPR12].
In this subsection, we outline the key ideas of this approach and present the essen-
tial ingredients needed for the proof of Theorem 1.12. More precisely, we outline a
proof of Conjecture 1.5 in the case of projective surfaces and sketch the main ideas
underlying the general higher-dimensional case.

2.6.1. Some analytic tools from harmonic mapping. We shall give some analytic
tools. Based on [DM26, Proposition 4.15], in [DW24a, §3], we prove that

Lemma 2.44. Let 𝑋 be a smooth projective variety endowed with a Kähler form
𝜔. Let 𝜏 : 𝜋1 (𝑋) → 𝐺 (𝐾) be a Zariski dense representation, where 𝐺 is a reductive
group over a non-archimedean local field 𝐾. Let 𝑢 : 𝑋 → Δ(𝐺)𝐾 be the 𝜏-equivariant
pluriharmonic map ensured by Gromov-Schoen’s theorem [GS92]. Fix a base point

𝑥0 ∈ 𝑋. Define a 1-form

𝛽𝜏 :=
√
−1𝜕𝑑2

Δ(𝐺) (𝑢(𝑥), 𝑢(𝑥0)).(2.44.1)

on the universal cover 𝑋 of 𝑋. Then we have

• 𝛽𝜏 has 𝐿1-local coefficients, and is smooth almost everywhere.
• There exists some constant 𝐶 > 0 such that we have

|𝛽𝜏 |𝜋∗
𝑋
𝜔 ≤a.e. 𝐶 (1 + 𝑑𝑋 (𝑥, 𝑥0)),

where 𝑑
𝑋
(𝑥, 𝑥0) is the distance function on 𝑋 induced by 𝜋∗

𝑋
𝜔.

• Define 𝜙𝜏𝑖 := 𝑑
2
Δ(𝐺)

(
𝑢(𝑥), 𝑢(𝑥0)

)
, which is a continuous semipositive func-

tion on 𝑋. Then we have

𝑑𝛽𝜏 =
√
−1𝜕𝜕𝜙𝜏𝑖 ,
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which is a real, closed, and positive (1, 1)-current, and it satisfies

𝑑𝛽𝜏 ≥ 𝜋∗𝑇𝜏 .

In the archimedean case, Eyssidieux proved an analogous result in [Eys00,
Proposition 4.5.1], which we recall below.

Lemma 2.45. Let L be a C-variation of Hodge structure on 𝑋. There exists a
smooth real-valued plurisubharmonic function 𝜙L on 𝑋, bounded from below, such
that √

−1𝜕𝜕𝜙L ≥ 𝜋∗𝑋
(√

−1 tr 𝜃 ∧ 𝜃∗
)
, |𝑑𝜙L |𝜋∗

𝑋
𝜔 ≤ 𝐶.

Here 𝜃 denotes the Higgs field of L, and 𝜃∗ its adjoint with respect to the Hodge
metric.

If we introduce a smooth 1-form on 𝑋 by setting

𝛽L :=
√
−1𝜕𝜙L ,

then we have

𝑑𝛽L ≥ 𝜋∗𝑋
(√

−1 tr 𝜃 ∧ 𝜃∗
)
, |𝛽L |𝜋∗

𝑋
𝜔 ≤ 𝐶.(2.45.1)

Next, we give the criterion for an infinite topological Galois covering of a com-
pact complex normal space to be Stein.

Lemma 2.46 ( [Eys04, Proposition 4.1.1]). Let 𝑆 be a compact complex normal
space, and let 𝜈 : Σ → 𝑆 be an infinite topological Galois covering. Let 𝑇 be a closed
positive (1, 1)-current on 𝑆 with continuous local potentials, whose cohomology class
{𝑇} is Kähler. Assume that there exists a real-valued continuous plurisubharmonic
function 𝜙 on Σ, bounded from below, such that

√
−1 𝜕𝜕𝜙 ≥ 𝜈∗𝑇.

Then Σ is a Stein space. □

2.6.2. Two lemmas on finiteness and boundedness criteria. We will need the
following results concerning finiteness and boundedness criteria for subgroups. Their
proofs rely on the geometry of Bruhat–Tits buildings.

Lemma 2.47 ( [CDY25b, Lemma 5.3]). Let 𝐺 be an almost simple algebraic
group defined over a non-archimedean local field 𝐾. Assume that Γ ⊂ 𝐺 (𝐾) is an
unbounded subgroup whose Zariski closure contains 𝐺◦ (𝐾), where 𝐺◦ denotes the
identity component of 𝐺. If 𝑁⊳Γ is a bounded normal subgroup, then 𝑁 is finite. □

(cf. [Bru22] for an independent proof).

Lemma 2.48 ( [DY25, Lemma 7.15]). Let 𝐺 be a semisimple algebraic group over
a non-archimedean local field 𝐾. Let Γ ⊂ 𝐺 (𝐾) be a finitely generated subgroup
whose Zariski closure contains 𝐺◦ (𝐾), where 𝐺◦ denotes the identity component of
𝐺. If its derived group DΓ is bounded, then Γ is also bounded. □

2.6.3. Ideas of proof of holomorphic convexity. By Theorem 2.40, one can show
that, after passing to a finite étale cover, an almost faithful representation factors
through a large local system on the Shafarevich variety Sh(𝑋). Consequently, it
suffices to establish the Steinness of the universal cover in the case of large and
reductive representations. In this subsection, we outline the proof of the reductive
Shafarevich conjecture for smooth projective surfaces.
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Theorem 2.49. Let 𝑋 be a smooth projective surface. If there exists a semisim-
ple and large representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C), then the universal covering 𝑋
of 𝑋 is Stein.

Proof. Let L be the C-VHS defined in Proposition 2.33. Let 𝜃 be its Higgs
field and 𝜃∗ be the adjoint of 𝜃 with respect to the Hodge metric.

Case 1: The set Υ in Definition 2.31 contains no unbounded representation.
This means that 𝑠fac : 𝑋 → 𝑆Fac(𝑋) is a constant map. Then by Proposi-

tion 2.33, 𝜚 is a direct factor of a C-VHS L with discrete monodromy. Since 𝜚 is
large, the monodromy representation of L is thus also large. Hence, by Lemma 2.28
its period map 𝑝 : 𝑋 → 𝒟/Γ is finite. One can show that for the real (1, 1)-form√
−1 tr 𝜃 ∧ 𝜃∗, its cohomology class{√

−1 tr 𝜃 ∧ 𝜃∗
}

is a Kähler class. By Lemma 2.45, there exists a smooth real-valued plurisubhar-
monic function 𝜙L on 𝑋, bounded from below, such that

√
−1𝜕𝜕𝜙L ≥ 𝜋∗𝑋

(√
−1 tr 𝜃 ∧ 𝜃∗

)
.

Then, by Lemma 2.46, the universal cover 𝑋 is Stein.

From now on, we assume that Υ contains at least one unbounded representation.
By Lemma 2.30, there exists unbounded and reductive representations τ := {𝜏𝑖 :
𝜋1 (𝑋) → GL𝑁 (𝐾𝑖)}𝑖=1,...,𝑘 with 𝐾𝑖 a non-archimedean local field of characteristic
0 such that the Stein factorization of products of Katzarkov-Eyssidieux reduction
maps

𝑠𝜏1 × · · · × 𝑠𝜏𝑘 : 𝑋 → 𝑆𝜏1 × · · · × 𝑆𝜏𝑘
coincides with 𝑠fac : 𝑋 → 𝑆Fac. Let 𝑋sp → 𝑋 be the spectral covering associated
with τ . Let {𝜂1, . . . , 𝜂𝑘} ⊂ 𝐻0 (𝑋sp, 𝜋∗Ω1

𝑋
) be the associated spectral 1-forms as in

Proposition 2.25. We define the rank as follows: if there exist 𝑖 and 𝑗 such that
𝜂𝑖 ∧ 𝜂 𝑗 ≠ 0, then we say that the rank is 2; otherwise, the rank is 1.

Case 2: The spectral 1-forms have rank 2. By our construction of canonical currents
in Definition 2.23, we have

𝐶𝜋∗ (𝑇𝜏1 + · · · + 𝑇𝜏𝑘 ) =
√
−1

𝑚∑︁
𝑖=1

𝜂𝑖 ∧ 𝜂𝑖

for some constant 𝐶 > 0. Then

𝑇τ := 𝑇𝜏1 + · · · + 𝑇𝜏𝑘
is strictly positive at general points since the spectral forms associated with τ has
rank 2. Since 𝑇τ has continuous local potentials, it follows that 𝑇τ is a big and nef
class. By the construction of 𝑇τ , one can show that there exists a closed positive
(1, 1)-current 𝑇 on 𝑆Fac(𝑋) such that

𝑠∗fac𝑇 = 𝑇τ .

This in particular shows that 𝑠fac is a birational morphism. On the other hand, as a
consequence of Theorem 2.26, we can show that {𝑇} ·𝐶 > 0 for any irreducible curve
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𝐶 on 𝑆Fac(𝑋). We now apply a theorem by Demailly-Păun [DP04] (or [Lam99])
to conclude that {𝑇} is a Kähler class on 𝑆Fac(𝑋).

On the other hand, for each positive dimensional fiber 𝐹 of 𝑠fac, by Proposi-
tion 2.33, L|𝐹norm is a C-VHS with discrete monodromy, and 𝜚 |𝜋1 (𝐹norm ) is a direct
factor of L|𝐹norm . Since 𝜚 is large, then the period map 𝐹norm → 𝒟/Γ is finite,
where Γ is the monodromy group of L|𝐹norm . One can show that

{(
√
−1tr𝜃 ∧ 𝜃∗) |𝐹 }

is a Kähler class. Therefore,

{
√
−1tr𝜃 ∧ 𝜃∗ + 𝑇τ }

is a Kähler class on 𝑋. Let 𝜙𝜏𝑖 be the continuous semipositive function associated
with 𝜏𝑖, as defined in Lemma 2.44, and let 𝜙L be the continuous function, bounded
from below, associated with L, as defined in Lemma 2.45. Then we have

√
−1𝜕𝜕 (𝜙L +

𝑘∑︁
𝑖=1

𝜙𝜏𝑖 ) ≥ 𝜋∗𝑋 (
√
−1tr𝜃 ∧ 𝜃∗ + 𝑇τ )

By Lemma 2.46, we conclude that 𝑋 is Stein.

Case 3: Regardless of the elements 𝜏1, . . . , 𝜏𝑚 ∈ Υ chosen, their spectral 1-forms
have rank 1.
Case 3.1: dim 𝑆Fac(𝑋) = 1.

The proof is the same as Case 2. We leave it as an exercise to the readers.
Case 3.2: dim 𝑆Fac(𝑋) = 2.
Case 3.2.1: The dimension of spectral 1-forms is at least two:

Suppose dimCSpan{𝜂1, . . . , 𝜂ℓ } ≥ 2.
Without loss of generality, we may assume that 𝜂1 ∧ 𝜂2 ≡ 0 and 𝜂1 ∉ {C𝜂2}.

According to the Castelnuovo-De Franchis theorem (cf. [ABC+96, Theorem 2.7]),
there exists a proper fibration ℎ : 𝑋sp → 𝐶 over a smooth projective curve 𝐶 such
that {𝜂1, 𝜂2} ⊂ ℎ∗𝐻0 (𝐶,Ω1

𝐶
). Since 𝑠fac is birational, we can choose a general fiber 𝐹

of ℎ, which is irreducible and such that 𝑠fac ◦𝜋(𝐹) is not a point. By Theorem 2.26,
we can show that there exists some 𝑖 such that 𝜂𝑖 |𝐹 ≠ 0. Given that 𝜂1 |𝐹 ≡ 0,
this implies that 𝜂𝑖 ∧ 𝜂1 ≠ 0. It contradicts with our assumption that the spectral
1-forms have rank 1. Therefore, this case cannot occur.

We now turn to the final—and most difficult—case, which also relies on several
deep results from non-abelian Hodge theories by Simpson.

Case 3.2.2: Regardless of the elements 𝜏1, . . . , 𝜏𝑚 ∈ Υ chosen, the dimension of
spectral 1-forms remains 1.

Pick any non-archimedean representation 𝜏 : 𝜋1 (𝑋) → GL𝑁 (𝐾) that is un-
bounded. Let 𝐺 be the Zariski closure of 𝜏(𝜋1 (𝑋)), which is reductive. Consider
the isogeny 𝑔 : 𝐺 → 𝐺/𝑍 ×𝐺/D𝐺 where 𝑍 is the central torus of 𝐺 and D𝐺 is the
derived group of 𝐺. As a result, 𝐺′ := 𝐺/𝑍 is semisimple and 𝐺′′ := 𝐺/D𝐺 is a
torus. Let 𝜏′ : 𝜋1 (𝑋) → 𝐺′ (𝐾) be the composite of 𝜏 with the projection 𝐺 → 𝐺′,
and 𝜏′′ : 𝜋1 (𝑋) → 𝐺′′ (𝐾) be the composite of 𝜏 with the projection 𝐺 → 𝐺′′. Then
𝜏′ and 𝜏′′ are both Zariski dense representations.

Claim 2.50. The representation 𝜏′ is bounded.
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Proof. Let 𝑋sp → 𝑋 be the spectral covering associated with 𝜏 and let 𝜈 : 𝑌 →
𝑋sp be a desingularization. By the assumption, the spectral 1-forms are a subset
of C𝜂, where 𝜂 is a 1-form in 𝐻0 (𝑌,Ω1

𝑌
). Consider the partial Albanese morphism

𝑎 : 𝑌 → 𝐴 induced by 𝜂 (see [CDY25b, Definition 3.25] for the definition). Then
there exists a one form 𝜂′ ∈ 𝐻0 (𝐴,Ω1

𝐴
) such that 𝑎∗𝜂′ = 𝜂. If dim 𝑎(𝑌 ) = 1, then the

Stein factorization ℎ : 𝑌 → 𝐶 of 𝑎 is a proper holomorphic fibration over a smooth
projective curve 𝐶 such that 𝜂1 ∈ ℎ∗𝐻0 (𝐶,Ω1

𝐶
). We are now in a situation akin to

Case 3.1, and we can apply the same arguments to reach a contradiction. Hence
dim 𝑎(𝑌 ) = 2. Let 𝜋𝐴 : 𝐴 → 𝐴 denote the universal covering map. We denote by
𝑌 ′ := 𝑌 ×

𝐴
𝐴 a connected component of the fiber product and let 𝜋′ : 𝑌 ′ → 𝑌 be

the induced étale cover. It is worth noting that 𝜋′∗𝜂 is exact. Consequently, we can
define the following holomorphic map:

ℎ : 𝑌 ′ → C

𝑦 ↦→
∫ 𝑦

𝑦0

𝜋′∗𝜂.

We then have the following commutative diagram:

𝑌 𝑌 ′ 𝑌

𝐴 𝐴

C

𝑝

𝜋𝑌

ℎ

𝜋′

𝑎

𝜋𝐴

The holomorphic map 𝐴 → C in the above diagram is defined by the linear 1-
form 𝜋∗

𝐴
𝜂′ on 𝐴. By Simpson’s Lefschetz theorem [Sim93a], for any 𝑡 ∈ C, ℎ−1(𝑡)

is connected and 𝜋1 (ℎ−1(𝑡)) → 𝜋1 (𝑌 ′) is surjective. By definition of ℎ, 𝜋∗
𝑌
𝜂 |𝑍 ≡ 0

where 𝑍 is any connected component of 𝑝−1(ℎ−1(𝑡)). Here 𝑝 : 𝑌 → 𝑌 ′ is the natural
covering map.

Consider the Zariski dense representation 𝜏′ : 𝜋1 (𝑋) → 𝐺′ (𝐾 ) as defined
previously. Let 𝐿 be a finite extension of 𝐾 such that 𝐺′ is defined on 𝐿 and
𝜏′ : 𝜋1 (𝑋) → 𝐺′ (𝐿). We denote by 𝜎 : 𝜋1 (𝑌 ) → 𝐺′ (𝐿) the pullback of 𝜏′

via the morphism 𝑌 → 𝑋. The existence of a 𝜎-equivariant harmonic mapping
𝑢 : 𝑌 → Δ(𝐺′)𝐿 is guaranteed by [GS92], where Δ(𝐺′)𝐿 is the Bruhat-Tits building
of 𝐺′.

We note that 𝜋∗
𝑌
𝜂 is the (1,0)-part of the complexified differential of the har-

monic mapping 𝑢 at general points of 𝑌 , with 𝜋𝑌 : 𝑌 → 𝑌 denoting the universal
covering. For any connected component 𝑍 of 𝑝−1(ℎ−1(𝑡)) for a general 𝑡 ∈ C, since
𝜋∗
𝑌
𝜂 |𝑍 ≡ 0, and all the spectral forms are assumed to be C-linearly equivalent, it

follows that 𝑢(𝑍) is a point 𝑃 ∈ Δ(𝐺′)𝐿. Since 𝑢 is 𝜎-equivariant, it follows that
𝜋′∗𝜎(Im[𝜋1 (ℎ−1(𝑡)) → 𝜋1 (𝑌 ′)]) is contained in the subgroup of 𝐺′ (𝐿) fixing the
point 𝑃, which is thus bounded. Recall that 𝜋1 (ℎ−1(𝑡)) → 𝜋1 (𝑌 ′) is surjective.
Hence 𝜋′∗𝜎(𝜋1 (𝑌 ′)) is a bounded subgroup of 𝐺′ (𝐿). Additionally, note that the
derived group

D𝜋1 (𝑌 ) ⊂ Im[𝜋1 (𝑌 ′) → 𝜋1 (𝑌 )],
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and it follows that 𝜎(D𝜋1 (𝑌 )) is bounded. Since 𝜏′ is Zariski dense, and Im[𝜋1 (𝑌 ) →
𝜋1 (𝑋)] is a finite index subgroup of 𝜋1 (𝑋), the Zariski closure of 𝜎(𝜋1 (𝑌 )) contains
the identity component of 𝐺′, and it is also semisimple. We apply Lemma 2.48 to
conclude that 𝜎(𝜋1 (𝑌 )) is bounded. Hence 𝜏′ is bounded. □

By Theorem 2.26, the Katzarkov-Eyssidieux reduction map 𝑠𝜏′ is constant.
This implies that the reduction map 𝑠𝜏 is identified with 𝑠𝜏′′ .

Note that 𝐺′′ is a torus. A key idea originally introduced by Eyssidieux
in [Eys04] is the use of Simpson’s absolutely constructible subsets to handle this
situation. We sketch the arguments in [DYK23, Theorem 4.5]; the following dis-
cussion is intended as an outline rather than a rigorous proof.

Consider the composition of natural morphisms among Betti moduli spaces:

Ψ : 𝑀B (𝑋, 𝐺) → 𝑀B (𝑌, 𝐺) → 𝑀B (𝑌, 𝐺′′).

By [Sim93b], the image of 𝑀B (𝑋, 𝐺) under this composition is an absolutely con-
structible subset, denoted by 𝑀acs, of 𝑀B (𝑌, 𝐺′′). Since 𝐺′′ is a torus, 𝑀B (𝑌, 𝐺′′)
is essentially a product of copies of 𝑀B (𝑌, 1).

For simplicity, we assume that 𝐺′′ is a one-dimensional torus. Then Simp-
son’s theorem [Sim93b] states that the closure of 𝑀acs is a finite union of torsion
translates of subtori in 𝑀B (𝑌, 1).

Since we assume that dim 𝑎(𝑌 ) = 2, a crucial step in [DYK23, Theorem 4.5]
shows that one can find sufficiently many representations

{𝜎𝑖 : 𝜋1 (𝑋) → 𝐺 (𝐾𝑖)}𝑖=1,...,ℓ ,

where each 𝐾𝑖 is a non-archimedean local field of characteristic zero, such that their
images

{Ψ(𝜎𝑖) : 𝜋1 (𝑋) → GL1 (𝐾𝑖)}𝑖=1,...,ℓ
in 𝑀acs are unbounded representations, and the holomorphic 1-forms on 𝑌 induced
by them have rank 2. This implies that the associated spectral 1-forms have rank 2,
which leads to a contradiction. □

Remark 2.51. In the general case, one must extend Simpson’s Lefschetz theorem
for leaves of holomorphic foliations defined by systems of holomorphic 1-forms. This
extension is a crucial step in the proof of the reductive Shafarevich conjecture and
was established by Eyssidieux in [Eys04]. Based on this general Lefschetz theorem,
together with a suitable application of absolutely constructible subsets, we prove
in [DYK23, Proof of Theorem 4.31] that there exist representations

{𝜏𝑖 : 𝜋1 (𝑋) → 𝐺 (𝐾𝑖)}𝑖=1,...,ℓ ,

where each 𝐾𝑖 is a non-archimedean local field of characteristic zero, such that
the sum of the canonical currents associated with these representations,

∑ℓ
𝑖=1 𝑇𝜏𝑖 ,

is the pullback via 𝑠fac of a closed positive (1, 1)-current 𝑇fac on 𝑆Fac(𝑋), whose
cohomology class {𝑇fac} is Kähler.

Recall that for the C-VHS L on 𝑋 constructed in Proposition 2.33, its restric-
tion to each fiber 𝐹 of 𝑠fac has discrete monodromy. If we assume that there exists
a big and semisimple representation on 𝑋, then for a general fiber 𝐹 of 𝑠fac, the
period map of L|𝐹 is generically finite onto its image. Consequently, one can show
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that the cohomology class {
ℓ∑︁
𝑖=1

𝑇𝜏𝑖 +
√
−1 tr(𝜃 ∧ 𝜃∗)

}
is big and nef on 𝑋. This fact is crucial in the proof of the linear Kollár conjecture
(Theorem 1.12).

Remark 2.52. In [DYK23, Appendix], Katzarkov, Yamanoi, and the author
proved the reductive Shafarevich conjecture for projective normal varieties 𝑋 ad-
mitting a faithful reductive representation

𝜚 : 𝜋1 (𝑋) → GL𝑁 (C),
thereby extending the results of [Eys04] to the singular setting. We now outline
the main strategy of the proof in [DYK23].

Let 𝜇 : 𝑌 → 𝑋 be a desingularization. Since the induced morphism 𝜋1 (𝑋) →
𝜋1 (𝑌 ) is surjective, the natural morphism of Betti moduli spaces

𝜄 : 𝑀B (𝑋, 𝑁) ↩→ 𝑀B (𝑌, 𝑁)
induced by 𝜇 is a closed immersion. Using a theorem of Lerer [Ler22], we show
that the image of 𝜄 is an absolutely constructible subset of 𝑀B (𝑌, 𝑁) in the sense of
Budur–Wang [BW20].

Define the subgroup

Γ :=
⋂
𝜏

ker 𝜏,

where 𝜏 : 𝜋1 (𝑌 ) → GL𝑁 (C) ranges over all reductive representations lying in
𝜄(𝑀B (𝑋, 𝑁)). We then prove that the covering 𝑌Γ → 𝑌 of 𝑌 is holomorphically
convex.

Next, define

Γ′ :=
⋂
𝜏

ker 𝜏,

where 𝜏 : 𝜋1 (𝑋) → GL𝑁 (C) ranges over all reductive representations in 𝑀B (𝑋, 𝑁).
The morphism 𝜇 lifts to a proper holomorphic map 𝜇 : 𝑌Γ → 𝑋Γ′ , fitting into the
commutative diagram

𝑌Γ 𝑌

𝑋Γ′ 𝑋.

𝜇 𝜇

By Theorem 2.3, it follows that 𝑋Γ′ is holomorphically convex. Since the represen-
tation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C) is faithful and reductive, we conclude that 𝑋Γ′ = 𝑋,
which completes the proof.

Let me conclude this section by presenting a recent application of the linear
Shafarevich conjecture (Theorem 1.6). In [EF25], Eyssidieux and Funar estab-
lished new constraints on algebro-geometric subgroups of mapping class groups.
As a consequence, they proved that the universal cover of the smooth proper

Deligne–Mumford stack M𝑔,𝑛 [k], the universal covering space of the stack is, in
most cases, a Stein manifold. Further applications of the techniques used to study
the linear Shafarevich conjecture, as presented in this section, will be discussed in
the subsequent sections.
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3. Hyperbolicity and funmamental groups: ideas of proofs

In this section, we sketch the main idea behind the proofs of Theorems 1.36
and 1.37.

3.1. A theorem of Nevanlinna theory on semiabelian variety. In this
subsection, we recall some notions from Nevanlinna theory. Readers who are not
familiar with Nevanlinna theory are referred to the excellent survey by Yamanoi
[Yam15b] or Demailly [Dem97].

In this section, 𝐴 is a semi-abelian variety and 𝑌 is a Riemann surface with a
proper surjective holomorphic map 𝜋 : 𝑌 → C>𝛿 , where C>𝛿 := {𝑧 ∈ C | 𝛿 < |𝑧 |}
with some fixed positive constant 𝛿 > 0.

For 𝑟 > 2𝛿, define 𝑌 (𝑟) = 𝜋−1
(
C>2𝛿 (𝑟)

)
where C>2𝛿 (𝑟) = {𝑧 ∈ C | 2𝛿 < |𝑧 | < 𝑟}.

In the following, we assume that 𝑟 > 2𝛿. The ramification counting function of the
covering 𝜋 : 𝑌 → C>𝛿 is defined by

𝑁ram 𝜋 (𝑟) :=
1

deg𝜋

∫ 𝑟

2𝛿


∑︁
𝑦∈𝑌 (𝑡 )

ord 𝑦ram 𝜋


𝑑𝑡

𝑡
,

where ram 𝜋 ⊂ 𝑌 is the ramification divisor of 𝜋 : 𝑌 → C>𝛿 .
Let 𝐿 be a line bundle on 𝑋. Let 𝑓 : 𝑌 → 𝑋 be a holomorphic map. We

define the order function 𝑇 𝑓 (𝑟, 𝐿) as follows. First suppose that 𝑋 is smooth. We
equip with a smooth hermitian metric ℎ𝐿, and let 𝑐1 (𝐿, ℎ𝐿) be the curvature form
of (𝐿, ℎ𝐿).

𝑇 𝑓 (𝑟, 𝐿) :=
1

deg 𝜋

∫ 𝑟

2𝛿

[∫
𝑌 (𝑡 )

𝑓 ∗𝑐1 (𝐿, ℎ𝐿)
]
𝑑𝑡

𝑡
.

This definition is independent of the choice of the hermitian metric up to a function
𝑂 (log 𝑟).

Theorem 3.1 ( [CDY25a, Theorem A]). Let 𝑋 be a smooth quasi-projective
variety which is of log general type. Assume that there is a morphism 𝑎 : 𝑋 → 𝐴

such that dim 𝑋 = dim 𝑎(𝑋). Then there exists a proper Zariski closed set Ξ ⫋
𝑋 with the following property: let 𝑓 : 𝑌 → 𝑋 be a holomorphic map such that
𝑁ram 𝜋 (𝑟) = 𝑂 (log 𝑟) +𝑜(𝑇 𝑓 (𝑟)) | | and that 𝑓 (𝑌 ) ⊄ Ξ. Then 𝑓 does not have essential

singularity over ∞, i.e., there exists an extension 𝑓 : 𝑌 → 𝑋 of 𝑓 , where 𝑌 is a
Riemann surface such that 𝜋 : 𝑌 → C>𝛿 extends to a proper map 𝜋 : 𝑌 → C>𝛿∪{∞}
and 𝑋 is a compactification of 𝑋.

Note that Theorem 3.1 is proven by Yamanoi in [Yam15a] when 𝑋 is com-
pact. Its proof is based on techniques in Nevanlinna theories in [Yam15a]. Com-
pared with the compact case treated in [Yam15a], the lack of Poincaré reducibil-
ity theorem is a major difficulity to treat the non-compact case. We use a more
general “cover” than étale cover to overcome this problem. We refer the readers
to [CDY25a, Remark 10.11] for the main difficulty and novelty in the non-compact
cases. Since the proof of Theorem 3.1 is highly involved and unrelated to other as-
pects of the paper, we choose to omit it. Instead, we present a fundamental result
from Nevanlinna theory.

Claim 3.2. Let 𝑓 : 𝑌 → 𝑋 be as above. If the order function 𝑇 𝑓 (𝑟, 𝐿) = 𝑂 (log 𝑟) as
𝑟 → ∞, then 𝑓 does not have essential singularity at infinity.
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In a nutshell, the ultimate goal in proving Theorem 3.1 is to estimate the
order function 𝑇 𝑓 (𝑟, 𝐿) utilizing Nevanlinna theory tools, such as the logarithmic
derivative lemma, the Second Main Theorem, jet differentials, and other related
techniques.

In the context of Nevanlinna theory in [CDY25a, §10], another crucial result
is obtained.

Theorem 3.3 ( [CDY25a, Corollary 10.8]). Let 𝑋 be a smooth quasi-projective
variety and let 𝑎 : 𝑋 → 𝐴 × 𝑆 be a morphism such that dim 𝑋 = dim 𝑎(𝑋), where
𝑆 is a smooth quasi-projective variety (𝑆 can be a point). Write 𝑏 : 𝑋 → 𝑆 as the
composition of 𝑎 with the projection map 𝐴 × 𝑆 → 𝑆. Assume that 𝑏 is dominant.

(i) Suppose 𝑆 is pseudo Picard hyperbolic. If 𝑋 is of log general type, then 𝑋

is pseudo Picard hyperbolic.
(ii) Suppose 𝑆 is strongly of log general type. If 𝑋 is pseudo Brody hyperbolic,

then 𝑋 is strongly of log general type. □

3.2. Hyperbolicity and non-archimedean local system. A crucial step
for the proof of Theorem 1.36 is the following result.

Theorem 3.4 ( [CDY25b, Theorem F]). Let 𝑋 be a quasi-projective nor-
mal variety and let 𝐺 be an almost simple algebraic group defined over a non-
archimedean local field 𝐾. If 𝜚 : 𝜋1 (𝑋) → 𝐺 (𝐾) is a big, Zariski dense, and un-
bounded representation, then 𝑋 is of log general type, and pseudo Picard hyperbolic.

We would like to sketch the idea of the proof of Theorem 3.4 since the methods
are new even if 𝑋 is projective (compared with [CCE15]).

Proof of Theorem 3.4 (sketch). For simplicity, we assume that 𝐺 is ge-

ometrically connected. Let 𝜋 : 𝑋sp → 𝑋 be the spectral covering associated with
𝜚 in Proposition 2.25. By Proposition 2.25, it is a finite Galois covering with the
Galois group 𝐻 and satisfies the following properties:

• there exists forms {𝜂1, . . . , 𝜂ℓ } ⊂ 𝐻0 (𝑋sp, 𝜋∗Ω1

𝑋
(log 𝐷)) such that {𝜂1, . . . , 𝜂ℓ }

coincides with the mutivalued one-forms 𝜋∗{𝜔1, . . . , 𝜔ℓ } induced by the
𝜚-equivariant pluriharmonic map 𝑢 with logarithmic energy at infinity
constructed in Theorem 2.20.

• Let us denote by Ram(𝜋) the ramification locus of 𝜋 : 𝑋sp → 𝑋. Then we
have

Ram(𝜋) ⊂
⋃
𝜂𝑖≠𝜂 𝑗

(𝜂𝑖 − 𝜂 𝑗 = 0).(3.4.1)

• {𝜂1, . . . , 𝜂ℓ } is invariant under the Galois group 𝐻.

Claim 3.5. The quasi-Albanese map 𝑎 : 𝑋sp → 𝐴 satisfies dim 𝑋sp = dim 𝑎(𝑋sp).

Let us explain the proof of Claim 3.5. Assume by contradiction that dim 𝑎(𝑋sp) <
dim 𝑋sp. Let 𝐹 be a connected component of a general fiber of 𝑎. Then 𝜂𝑖 |𝐹 ≡ 0
for each 𝜂𝑖.

Let 𝜋′ : 𝑋̃sp → 𝑋sp be the universal covering and denote by 𝜋 : 𝑋̃sp → 𝑋 be the
map between universal covering lifting 𝜋 : 𝑋sp → 𝑋. Denote by 𝜏 = 𝜋∗𝜚 : 𝜋1 (𝑋sp) →
𝐺 (𝐾). Then 𝑢 ◦ 𝜋 : 𝑋̃sp → Δ(𝐺) is 𝜏-equivariant harmonic map with logarithmic
energy at infinity by Theorem 2.20.(iii). Let 𝐹′ be a connected component of
𝜋′−1(𝐹). Since {𝜂1, . . . , 𝜂ℓ } is generically the (1, 0)-part of complexified differentials
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of 𝑢◦𝜋, it follows that 𝑢◦𝜋(𝐹′) is a point. This implies that 𝜏(Im[𝜋1 (𝐹) → 𝜋1 (𝑋sp)])
fixes a point in Δ(𝐺), hence is bounded.

Note that 𝜏(Im[𝜋1 (𝐹) → 𝜋1 (𝑋sp)]) is a normal subgroup of 𝜏(𝜋1 (𝑋sp)). Since
𝜏(𝜋1 (𝑋sp)) is unbounded as 𝜚 is unbounded, by Lemma 2.47, we conclude that
𝜏(Im[𝜋1 (𝐹) → 𝜋1 (𝑋sp)]) is finite.

Since we assume that 𝜚 is big, 𝜏 is also big. We obtain a contradiction. Hence
dim 𝑎(𝑋sp) = dim 𝑋sp.

Therefore, the logarithmic Kodaira dimension 𝜅(𝑋sp) ≥ 0. Assume that it
is not maximal, then the logarithmic Iitaka fibration 𝑗 : 𝑋sp → 𝐽 has general
fibers positive dimensional. Let 𝐹 be a general fiber of 𝑗 . Then 𝑎 |𝐹 : 𝐹 → 𝐴 is
generically finite into the image and 𝜅(𝐹) = 0. By the criterion of abelian variety
in [CDY25a, Lemma 1.4], we conclude that 𝜋1 (𝐹) is abelian.

Note that the Zariski closure of 𝜏(𝜋1 (𝑋sp)) is also almost simple. Since

𝜏(Im[𝜋1 (𝐹) → 𝜋1 (𝑋sp)])
is a abelian and normal subgroup of 𝜏(𝜋1 (𝑋sp)) and 𝜚 is Zariski dense, we con-
clude that the Zariski closure of 𝜏(Im[𝜋1 (𝐹) → 𝜋1 (𝑋sp)]), denoted by 𝑁, is a
normal subgroup of 𝐺. Since 𝐺 is almost simple, it follows that 𝑁 is finite. Hence
𝜏(Im[𝜋1 (𝐹) → 𝜋1 (𝑋sp)]) is finite, contradicting with the assumption that 𝜚 is big.
Therefore, 𝑗 is birational, and we conclude that 𝑋sp is of log general type.

We will spread the positivity from 𝑋sp to 𝑋 to show that 𝑋 is of log general
type. This step is innovative and as far as I know, the method has never appeared
before. Define a section

𝜎 :=
∏
ℎ∈𝐻

∏
𝜂𝑖≠𝜂 𝑗

ℎ∗ (𝜂𝑖 − 𝜂 𝑗 ) ∈ 𝐻0 (𝑋sp, Sym𝑀𝜋∗Ω
𝑋
(log 𝐷)),

which is non-zero. By (3.4.1), 𝜎 vanishes at Ram(𝜋). Since it is invariant under
the 𝐻-action, it descends to a section

𝜎𝐻 ∈ 𝐻0 (𝑋, Sym𝑀Ω
𝑋
(log 𝐷))

so that 𝜋∗𝜎𝐻 = 𝜎. Let 𝑅 ⊂ 𝑋 be the ramification locus of 𝜋 : 𝑋sp → 𝑋. By the
purity we know that 𝑅 is a divisor on 𝑋. Note that 𝜎𝐻 vanishes at 𝑅. Therefore,
it induces a non-trivial morphism

O
𝑋
(𝑅) → Sym𝑀Ω

𝑋
(log 𝐷).(3.5.1)

Since 𝑋sp is of log general type, and 𝜋 is unramified over 𝑋 − 𝑅, it follows that
𝐾
𝑋
+𝐷+𝑅 is big. (3.5.1) together with a theorem of Campana-Păun in Theorem 3.7

below, implies that 𝐾
𝑋
+ 𝐷 is big. Therefore, 𝑋 is of log general type.

Let us prove that 𝑋 is pseudo Picard hyperbolic. Let 𝑔 : D∗ → 𝑋 be non-
constant holomorphic map that is not contained in Ram(𝜋). Then there exists
a Riemann surface 𝑌 , a proper surjective holomorphic map 𝑝 : 𝑌 → D∗ and a
holomorphic map 𝑓 : 𝑌 → 𝑋sp such that we have the following commutative diagram

𝑌 𝑋sp

D∗ 𝑋

𝑓

𝑝 𝜋

𝑔

A crucial fact is the estimation of the ramification counting function of 𝑝 : 𝑌 → D∗

in [CDY25b, Lemma 4.11] together with [CDY25a, Lemma 11.2].
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Claim 3.6. There exists a proper Zariski closed subset Ξ1 ⊊ 𝑋 such that if 𝑔(D∗) ⊄
Ξ1, then we have

𝑁ram 𝜋 (𝑟) = 𝑂 (log 𝑟) + 𝑜(𝑇 𝑓 (𝑟)).

Recall that 𝑋sp is of log general type and the quasi-Albanese map 𝑎 : 𝑋sp → 𝐴

satisfies that dim 𝑋sp = dim 𝑎(𝑋sp). Therefore, we apply Theorem 3.1 to conclude
that there exists a proper Zariski closed subset Ξ2 ⊊ 𝑋 such that 𝑔 does not have
essential singularity at the origin provided that 𝑔(D∗) ⊄ Ξ1 ∪ Ξ2. This proves that
𝑋 is pseudo Picard hyperbolic. □

Theorem 3.7 ( [CP19, Corollary 8.7]). Let 𝑋 be a smooth projective variety

and let 𝐷 be a simple normal crossing divisor on 𝑋. Let 𝐿 be a line bundle on 𝑋,
which admits a morphism 𝐿 →

⊗𝑚
Ω1

𝑋
(log 𝐷) for some 𝑚 > 0, and such that the

Q-bundle 𝜀
(
𝐾
𝑋
+ 𝐷

)
+ 𝐿 is big for some rational number 𝜀 ≥ 0. Then 𝐾

𝑋
+ 𝐷 is

big. □

3.3. Proof of Theorem 1.36 when char𝐾 = 0 (sketch). We can assume
that 𝐾 = C. For simplicity, we assume that the Zariski closure 𝐺 of 𝜚(𝜋1 (𝑋)) is
almost simple. There are several cases that occurs.
Case 1. 𝜚 is rigid. It means that for any continuous deformation 𝜚𝑡 of 𝜚,
we have [𝜚𝑡 ] = [𝜚], where [𝜚] denotes the image of 𝜚 in the Betti moduli space
𝑀B (𝑋, 𝑁) (C) := 𝑀B (𝜋1 (𝑋),GL𝑁 ) (C). By Mochizuki’s extension of Corollary 2.19
to the quasi-projective setting [Moc06], 𝜚 underlies a C-variation of Hodge struc-
ture (cf. also [CDY25b, §6] for a more self-contained proof). Moreover, after
replacing 𝜚 by a suitable conjugate, we may assume there exists a number field

𝑘 ⊂ Q such that

• 𝐺 is defined over 𝑘;
• we have the factorization 𝜚 : 𝜋1 (𝑋) → 𝐺 (𝑘);
• 𝜚(𝜋1 (𝑋)) is Zariski dense in 𝐺.

Case 1.1. Assume that for each non-archimedean place 𝑣 of 𝑘, the composite
𝜚𝑣 : 𝜋1 (𝑋) → GL𝑁 (𝑘𝑣) of 𝜚 and 𝑘 ↩→ 𝑘𝑣, is bounded. Here 𝑘𝑣 denotes the non-
archimedean completion of 𝑘 with respect to 𝑣.

If this case occurs, we have a factorization 𝜚 : 𝜋1 (𝑋) → GL𝑁 (O𝑘). Let us
denote by Ar(𝑘) the set of archimedean places of 𝑘. Note that GL𝑁 (O𝑘) →∏
𝑤∈Ar(𝑘 ) GL𝑁 (C) is a discrete subgroup by [Zim84, Proposition 6.1.3]. We de-

note by 𝜚𝑤 : 𝜋1 (𝑋) → GL𝑁 (C) the composite of 𝜚 and 𝑤 : 𝑘 ↩→ C. Then 𝜚𝑤 is also
rigid and thus underlies a C-VHS. It follows that for the product representation∏

𝑤∈Ar(𝑘 )
𝜚𝑤 : 𝜋1 (𝑋) →

∏
𝑤∈Ar(𝑘 )

GL𝑁 (C),

its image Γ is discrete.
Let 𝒟 be the period domain associated with the C-VHS of 𝜎 :=

∏
𝑤∈Ar(𝑘 ) 𝜚𝑤.

Since Γ acts discretely on𝒟, the quotient𝒟/Γ is a complex space. Let 𝑝 : 𝑋 → 𝒟/Γ
be the period map. As we assume that 𝜚 is big, the representation 𝜎 is also big. By
Lemma 2.28, we have dim 𝑋 = dim 𝑝(𝑋). Applying Theorem 1.27, we conclude that
𝑋 is pseudo-Picard hyperbolic, and is strongly of log general type by [BC20,CD21].

Case 1.2. Assume that there exists a non-archimedean place 𝑣 of 𝑘 such that the
composite 𝜚𝑣 : 𝜋1 (𝑋) → 𝐺 (𝑘𝑣), obtained from 𝜚 via the embedding 𝑘 ↩→ 𝑘𝑣, is
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unbounded. Note that 𝜚𝑣 (𝜋1 (𝑋)) is Zariski dense in 𝐺. Since 𝜚 is big, the repre-
sentation 𝜚𝑣 is also big. Therefore, the assumptions of Theorem 3.4 are satisfied,
and the theorem follows.
Case 2: 𝜚 is non-rigid. In the previous work like [CS08,Eys04], the authors
constructed unbounded representations using curves in character varieties in posi-
tive characteristic (after taking reduction mod 𝑝). Note that this is quite natural
in positive characteristic representation as we have seen in Theorem 2.37. However,
once we made some reduction mod 𝑝 arguments, these unbounded representations
might not be Zariski dense in 𝐺 nor big (hence we cannot apply Theorem 3.4).
In [CDY25b] we introduce a completely new method to construct unbounded rep-
resentations and avoid reduction mod 𝑝.

Claim 3.8 ( [CDY25b, Proposition 6.1]). If 𝜚 : 𝜋1 (𝑋) → 𝐺 (C) is non-rigid, then
there exists a big, Zariski dense, and unbounded representation 𝜚′ : 𝜋1 (𝑋) → 𝐺 (𝐾),
where 𝐾 is a finite extension of some Q𝑝 with 𝑝 prime.

The idea of the proof of Claim 3.8 is roughly that, for the set of bounded repre-
sentations 𝑅 in the representation variety 𝑅B (𝜋1 (𝑋), 𝐺) (𝐾), its image in the char-
acter variety 𝑀B (𝜋1 (𝑋), 𝐺) (𝐾) is compact. Since 𝜚 is non-rigid and 𝑀B (𝜋1 (𝑋), 𝐺)
is affine, the geometric connected component of 𝑀B (𝜋1 (𝑋), 𝐺) containing 𝜚 is non-
compact. Hence there exists some unbounded representation. Moreover, since
Zariski density of a representation into an almost simple algebraic group is a Zariski
open condition, we may assume that such an unbounded representation is Zariski
dense. To ensure that it is big, some additional work is required; we refer the reader
to [CDY25b, Proposition 6.1] for further details.

Since 𝜚 is non-rigid, by Claim 3.8 we can construct a big, Zariski dense, and
unbounded representation 𝜚′ : 𝜋1 (𝑋) → 𝐺 (𝐾), where 𝐾 is some non-archimedean
local field. We then apply Theorem 3.4 to conclude the theorem.

3.4. On the generalized Green-Griffiths-Lang conjecture.

Proof of Theorem 1.37 (sketch). Case 1: char𝐾 = 0. We may assume that
𝐾 = C. Let 𝐺 be the Zariski closure of 𝜚, which is a complex reductive group as we
assume that 𝜚 is reductive. We may assume that 𝐺 is connected after we replace
𝑋 by a finite étale cover. Let D𝐺 be the derived group of 𝐺 and let 𝑅(𝐺) be the
radical of 𝐺. Define 𝐺1 := 𝐺/𝑅(𝐺) which is semisimple and 𝐺2 := 𝐺/D𝐺 which is
a torus. Then 𝐺 → 𝐺1 × 𝐺2 is an isogeny.

Consider the representation 𝜎 : 𝜋1 (𝑋) → 𝐺1 (C) by composing 𝜚 with the
quotient 𝐺 → 𝐺1. Then 𝜎 is Zariski dense. One can show that, after replacing 𝑋
by a finite étale cover and a birational proper modification, there exists a dominant
morphism 𝑓 : 𝑋 → 𝑌 with connected general fibers, and a big and Zariski dense
representation 𝜏 : 𝜋1 (𝑌 ) → 𝐺 (𝐾) such that 𝑓 ∗𝜏 = 𝜎 (cf. [CDY25b, Proposition
2.5]). Therefore, by Theorem 1.36, we conclude that 𝑌 is pseudo Picard hyperbolic
and strongly of log general type, if it is not a point.

Consider the morphism ( 𝑓 , albX) : 𝑋 → 𝑌 × 𝐴, where alb𝑋 : 𝑋 → 𝐴 denotes the
quasi-Albanese map of 𝑋. Since 𝜚 is big, we can show that 𝑔 := ( 𝑓 , albX) is generi-
cally finite into its image. Hence we apply Theorem 3.3 to conclude Theorem 1.37.

Case 2: char𝐾 = 𝑝 > 0.
Let 𝑋 be a smooth projective compactification of 𝑋 such that 𝐷 := 𝑋 \ 𝑋

is a simple normal crossing divisor. By the same arguments as in Theorem 2.37,
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together with the assumption that 𝜚 is big, we can show that there exist unbounded
representations

{𝜏𝑖 : 𝜋1 (𝑋) → GL𝑁 (𝐾𝑖)}𝑖=1,...,𝑘 ,

where each 𝐾𝑖 is a finite extension of F𝑞𝑖 ((𝑡)) with 𝑞𝑖 = 𝑝𝑛𝑖 for some 𝑛𝑖 ∈ N, such
that, for the Katzarkov–Eyssidieux reduction maps 𝑠𝜏𝑖 : 𝑋 → 𝑆𝜏𝑖 associated with
𝜏𝑖, the product map

(𝑠𝜏1 , . . . , 𝑠𝜏𝑘 ) : 𝑋 −→ 𝑆𝜏1 × · · · × 𝑆𝜏𝑘

is generically finite onto its image.
By Proposition 2.25, there exists a spectral covering 𝜋 : 𝑋sp → 𝑋 of Galois

group 𝐻 such that

(a) there exists (spectral) forms {𝜂1, . . . , 𝜂𝑚} ⊂ 𝐻0 (𝑋sp, 𝜋∗Ω
𝑋
(log 𝐷)) associ-

ated with 𝜏1, . . . , 𝜏𝑘 , which are invariant under 𝐻;
(b) 𝜋 is étale outside

𝑅 := {𝑥 ∈ 𝑋sp | ∃𝜂𝑖 ≠ 𝜂 𝑗 with (𝜂𝑖 − 𝜂 𝑗 ) (𝑥) = 0}(3.8.1)

(c) There exists a morphism 𝑎 : 𝑋sp → 𝐴 to a semi-abelian variety 𝐴 with 𝐻
acting on 𝐴 such that 𝑎 is 𝐻-equivariant.

(d) The quasi-Stein factorization of the quotient 𝑋 → 𝐴/𝐻 of 𝑎 by 𝐻, coin-
cides with the quasi-Stein factorization of (𝑠𝜏1 , . . . , 𝑠𝜏𝑘 ).

Therefore, we have dim 𝑋sp = dim 𝑎(𝑋sp).
Assume that 𝑋 is of log general type. We will use notions of Nevanlinna theory

in § 3.1. For any holomorphic map 𝑓 : C>𝛿 → 𝑋 whose image is not contained
in 𝜋(𝑅), there exists a proper surjective holomorphic map 𝑝 : 𝑌 → C>𝛿 from a
connected Riemann surface 𝑌 to C>𝛿 and a holomorphic map 𝑔 : 𝑌 → 𝑋sp satisfying
the following diagram:

(3.8.2)

𝑌 𝑋sp

C>𝛿 𝑋

𝑔

𝑝 𝜋

𝑓

By Claim 3.6, there exists a proper Zariski closed subset Ξ ⊊ 𝑋 such that for any
holomorphic map 𝑓 : C>𝛿 → 𝑋 whose image not contained in Ξ, one has

𝑁ram 𝑝 (𝑟) = 𝑜(𝑇𝑔 (𝑟, 𝐿)) +𝑂 (log 𝑟) | |,

where 𝐿 is an ample line bundle on 𝑋sp and 𝑇𝑔 (𝑟, 𝐿) is the Nevanlinna order function.
Note that 𝑋sp of log general type as we assume that 𝑋 is of log general type and
𝜋 : 𝑋sp → 𝑋 is a Galois cover. We apply Theorem 3.1 to conclude that 𝑓 has no
essential singularity at the origin, which implies that 𝑋 is pseudo Picard hyperbolic.

Assume that 𝑋 is pseudo Brody hyperbolic. Then 𝑋sp is also pseudo Brody
hyperbolic, and by applying Theorem 3.3 with 𝑆 being a point, we conclude that
𝑋sp is of log general type. We then use exactly the same arguments as in the proof
of Theorem 3.4 to spread the positivity of 𝑋sp to 𝑋, relying on Theorem 3.7 to show
that 𝑋 is of log general type. □
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3.5. Proof of Theorem 1.36 when char𝐾 = 𝑝 > 0 (sketch). We will still
maintain the same notations as introduced in the proof of Theorem 1.37. Let
𝜋 : 𝑋sp → 𝑋 be the Galois covering defined therein. Consider the representation
𝜋∗𝜚 : 𝜋1 (𝑋sp) → 𝐺 (𝐾), which is Zariski dense. By the proof of Theorem 1.37,
there exists a morphism 𝑎 : 𝑋sp → 𝐴 where 𝐴 is a semiabelian variety such that
dim 𝑋sp = dim 𝑎(𝑋sp). Hence we have 𝜅(𝑋sp) ≥ 0. By the same arguments as in the
proof of Theorem 3.4, one can show that 𝑋sp is of log general type.

We now use Claim 3.6 together with Theorem 3.1 to conclude that 𝑋 is pseudo
Picard hyperbolic.

4. Topology of algebraic varieties in the presence of a big local system

In this section, we outline the proofs of the theorems stated in § 1.2, us-
ing the techniques in § 2, following a beautiful strategy initiated by Arapura–
Wang [AW25].

4.1. Proof of linear Chern-Hopf-Thurston conjecture. In this subsec-
tion, we skech the idea of the proof of Theorem 1.8 when 𝜚 is semisimple and
large.

For any perverse sheaf P, its characteristic cycle is

𝐶𝐶 (P) =
𝑚∑︁
𝑖=1

𝑛𝑖𝑇
∗
𝑍𝑖
𝑋,

where 𝑛𝑖 ∈ N, 𝑍𝑖 is an irreducible subvariety of 𝑋, and 𝑇∗
𝑍𝑖
𝑋 denotes the conormal

bundle of 𝑍𝑖 in the cotangent bundle 𝑇∗𝑋. Each 𝑇∗
𝑍𝑖
𝑋 is a conic Lagrangian cycle

of 𝑇∗𝑋. The crucial idea, initiated by Arapura and Wang [AW25], is the following
formula:

𝜒(𝑋,P) = 𝐶𝐶 (P) · 𝑇∗
𝑋𝑋,(4.0.1)

where 𝑇∗
𝑋
𝑋 denotes the conormal bundle of 𝑋, namely the zero section of the cotan-

gent bundle 𝑇∗𝑋 → 𝑋. Therefore, in order to prove Theorem 1.8, it suffices to show
that

Theorem 4.1. Let 𝑋 be a smooth projective variety and let 𝜚 : 𝜋1 (𝑋) →
GL𝑁 (𝐾) be a large representation, for any field 𝐾. Then for any closed subvariety
𝑍 of 𝑋, we always have

𝑇∗
𝑍𝑋 · 𝑇∗

𝑋𝑋 ≥ 0

for any closed subvariety 𝑍 ⊂ 𝑋.

Although the cotangent bundle 𝑇∗𝑋 is non-compact, the above intersection
number is well defined since the zero section 𝑇∗

𝑋
𝑋 is compact.

We begin with a preliminary observation regarding the strategy employed in
the proof of Theorem 1.8.

Lemma 4.2. Let 𝑋 be a smooth projective 𝑛-fold. If there exists a holomorphic
1-form 𝜂 on 𝑋 such that its zero locus 𝑍 (𝜂) := (𝜂 = 0) is zero-dimensional, then

(−1)𝑛𝜒(𝑋) ≥ 0.

Proof. Consider the graph Γ of the section 𝜂 of 𝑇∗𝑋 → 𝑋, which is a closed
subvariety of the total space 𝑇∗𝑋. Let 𝑇∗

𝑋
𝑋 denote the zero section of 𝑇∗𝑋. The
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graph Γ is homologous to 𝑇∗
𝑋
𝑋. Hence, computing the self-intersection of the zero

section, we have

(−1)𝑛𝜒(𝑋) = 𝑇∗
𝑋𝑋 · 𝑇∗

𝑋𝑋 = Γ · 𝑇∗
𝑋𝑋.

Since 𝑍 (𝜂) is zero-dimensional, the intersection of Γ and 𝑇∗
𝑋
𝑋 is proper. Therefore,

we have

Γ · 𝑇∗
𝑋𝑋 ≥ 0.

□

However, in general, we cannot guarantee the existence of holomorphic 1-forms
on 𝑋 in Theorem 4.1. Moreover, even if such holomorphic 1-forms exist, their zero
loci need not consist of isolated points. Consequently, the cycles in 𝑇∗𝑋 used
to compute the intersection—specifically the graph of the 1-form and the zero
section—may not intersect properly.

To address the first issue, we use a multivalued 1-form (see Definition 2.22)
instead and adapt the intersection theory from Lemma 4.2. To resolve the sec-
ond issue, we construct a procedure that deforms the intersection progressively to
achieve properness.

More precisely, using techniques analogous to deformation to the normal cone
in intersection theory, one can associate to a 𝑑-valued 1-form 𝜂 a map Φ𝜂 from
conic Lagrangian cycles to conic Lagrangian cycles such that, for any subvariety
𝑍 ⊂ 𝑋, one has

Φ𝜂 (𝑇∗
𝑍𝑋) = 𝑛0 𝑇∗

𝑍𝑋 +
∑︁

1≤𝑖≤𝑚
𝑛𝑖 𝑇

∗
𝑍𝑖
𝑋,(4.2.1)

where 𝑛0 is the multiplicity of the zero form in the restriction 𝜂 |𝑍reg
, and each 𝑍𝑖

is a proper closed subvariety of 𝑍. In particular, if 𝜂 |𝑍reg
is nontrivial, then 𝑛0 < 𝑑.

Moreover, we have

Φ𝜂 (𝑇∗
𝑍𝑋) · 𝑇∗

𝑋𝑋 = 𝑑𝑇∗
𝑍𝑋 · 𝑇∗

𝑋𝑋.

Therefore, if 𝜂 |𝑍 . 0, we have

(𝑑 − 𝑛0)𝑇∗
𝑍𝑋 · 𝑇∗

𝑋𝑋 =
∑︁

1≤𝑖≤𝑚
𝑛𝑖𝑇

∗
𝑍𝑖
𝑋 · 𝑇∗

𝑋𝑋,(4.2.2)

where 𝑍𝑖 ⊊ 𝑍 is a proper subvariety of 𝑍. Roughly speaking, we have

dim 𝑍 = dim(𝑇∗
𝑍𝑋 ∩ 𝑇∗

𝑋𝑋) > dim 𝑍𝑖 = dim(𝑇∗
𝑍𝑖
𝑋 ∩ 𝑇∗

𝑋𝑋),
implying that the intersection becomes more “proper”. We omit the precise defini-
tion of the map Φ𝜂 here and instead refer the interested reader to [DW24b, §3.1]
for further details.

Proof of Theorem 4.1 (sketch). Case 1: char𝐾 = 𝑝 > 0.
In Theorem 2.37, it is proved that for any linear 𝜎 : 𝜋1 (𝑋) → GL𝑁 (𝐾), then

there are representations 𝜏𝑖 : 𝜋1 (𝑋) → GL𝑁 (𝐾𝑖), where 𝐾𝑖 is non-archimedean
local field of characteristic 𝑝 (i.e. 𝐾𝑖 is a finite extension of F𝑝 ((𝑡))), such that the
Shafarevich morphism of 𝜎 is the Stein factorization of

𝑠𝜏1 × · · · × 𝑠𝜏𝑘 : 𝑋 → 𝑆𝜏1 × · · · × 𝑆𝜏𝑘 .
Therefore, when 𝜚 is large, its Shafarevich morphism is just the identity map,

and thus for any 𝑍, there exists some 𝜏𝑖 such that 𝑠𝜏𝑖 (𝑍) is not a point. By
the property of the Katzarkov-Eyssidieux reduction map in Theorem 2.26, there
multivalued 1-form 𝜂𝜏𝑖 |𝑍 . 0.
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Now we perform the iteration of the above algorithm, to achieve that dim 𝑍𝑖 = 0
for each 𝑖 in right-hand side of (4.2.2). The intersection of 𝑇∗

𝑍𝑖
𝑋 and 𝑇∗

𝑋
𝑋 is proper,

and we have
𝑇∗
𝑍𝑋 · 𝑇∗

𝑋𝑋 ≥ 0

for each 𝑍.

Case 2: 𝐾 = C and 𝜚 is semisimple.
Consider the map 𝑠fac : 𝑋 → 𝑆Fac(𝑋) defined in Definition 2.31. By Lemma 2.30,

there exist reductive representations {𝜏𝑖 : 𝜋1 (𝑋) → GL𝑁 (𝐾𝑖)}𝑖=1,...,𝑚, where each
𝐾𝑖 is a non-archimedean local field of characteristic zero, such that 𝑠fac : 𝑋 → 𝑆fac
is the Stein factorization of

𝑠𝜏1 × · · · × 𝑠𝜏𝑚 : 𝑋 → 𝑆𝜏1 × · · · × 𝑆𝜏𝑚 .
Here 𝑠𝜏𝑖 : 𝑋 → 𝑆𝜏𝑖 is the Katzarkov-Eyssidieux reduction map associated with 𝜏𝑖.

Fix a closed subvariety 𝑍 ⊆ 𝑋. Assume that 𝑠fac (𝑍) is not a point. Then 𝑠𝜏𝑖 (𝑍)
is not a point for some 𝑖. By Theorem 2.26, this implies that 𝜂𝜏𝑖 |𝑍 . 0.

We employ the same strategy, using the maps Φ𝜂𝜏1
, . . . ,Φ𝜂𝜏𝑚

defined above,
to make the intersection of 𝑇∗

𝑋
𝑋 with 𝑇∗

𝑍
𝑋 sufficiently proper. In this situation,

when the algorithm introduced above terminates, it means that each subvariety 𝑍𝑖
appearing on the right-hand side of (4.2.2) is contained in some fiber of 𝑆fac. Unlike
the case of positive characteristic, one may have dim 𝑍𝑖 > 0.

We now sketch the arguments of [DW24b] to treat this case; the following
discussion is intended as an outline rather than a rigorous proof.

Let L be the C-VHS on 𝑋 constructed in Proposition 2.33. For simplicity,
we assume that 𝑍𝑖 is smooth. By Proposition 2.33, the restriction 𝜚 |𝜋1 (𝑍𝑖 ) corre-
sponds to a direct summand of the local system underlying L, which has discrete
monodromy. If 𝜚 is large and semisimple, the period map of L|𝑍𝑖 is finite by the
arguments in Lemma 2.28. Consequently, certain curvature properties of the pe-
riod domain imply that 𝑇∗𝑍𝑖 is “almost” nef. As observed in [AW25], a theorem
of Demailly–Peternell–Schneider [DPS94] then implies that 𝑇∗

𝑍𝑖
𝑋 · 𝑇∗

𝑋
𝑋 ≥ 0. This

concludes the proof for this case.

Case 3: Suppose 𝐾 = C and 𝜚 is linear. The proof relies on the tautological vari-
ation of mixed Hodge structures introduced in [ES11], combined with arguments
used for the linear Shafarevich conjecture in [EKPR12]. Due to the technical
complexity of this construction, we omit the details here. □

4.2. Proof of the linear Kollár’s conjecture. In this subsection, we sketch
the proof of Theorem 1.12.(i) assuming that 𝜚 is semisimple and big.

As we see before, other two items in Theorem 1.12 follow from Theorem 1.12.(i).
So it suffices to prove Theorem 1.12.(i). By the byproducts in the proof of the
reductive Shafarevich conjecture [Eys04,DYK23], as we remarked in Remark 2.51,
there exists

(1) a family of Zariski dense representations {𝜏𝑖 : 𝜋1 (𝑋) → 𝐺𝑖 (𝐾𝑖)}𝑖=1,...,ℓ ,
where each 𝐺𝑖 is a reductive group over a non-archimedean local field 𝐾𝑖
of characteristic zero;

(2) a C-VHS L on 𝑋,

such that
Φ := 𝑇𝜏1 + · · · + 𝑇𝜏ℓ +

√
−1 tr(𝜃 ∧ 𝜃∗)
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is a closed positive (1, 1)-current on 𝑋, which is smooth and strictly positive over
a non-empty analytic open subset 𝑋◦ ⊂ 𝑋.

Here:

• 𝑇𝜏𝑖 denotes the canonical current on 𝑋 associated with 𝜏𝑖, as defined in
Definition 2.23;

• 𝜃 is the Higgs field of the Hodge bundle associated with L, and 𝜃∗ is its
adjoint with respect to the Hodge metric. □

Let 𝛽𝜏𝑖 be the 1-form on 𝑋 associated with 𝜏𝑖 defined in (2.44.1), and 𝛽L be the

1-form on 𝑋 associated with L defined in (2.45.1). Define 𝛽 := 𝛽L +∑ℓ
𝑖=1 𝛽𝜏𝑖 . Then

𝛽 has 𝐿1
loc-coefficients. By Lemma 2.44 and eq. (2.45.1), it satisfies

|𝛽(𝑥) | ≤a.e. 𝐶 (1 + 𝑑𝑋 (𝑥, 𝑥0))(4.2.3)

for some constant 𝐶 > 0, and

𝑑𝛽 ≥ 𝜋∗𝑋 (
ℓ∑︁
𝑖=1

𝑇𝜏𝑖 + 𝜔L) =: 𝜋∗𝑋Φ.(4.2.4)

Assume, for contradiction, that there exists a holomorphic (𝑝, 0)-form 𝛼 on 𝑋
which is 𝐿2 with respect to 𝜔, for some 0 ≤ 𝑝 ≤ 𝑛 − 1. A crucial step in [DW24a,
Theorem 2.2] is that the sublinear growth condition (4.2.3) implies that a suitable
“Stokes formula” holds, namely∫

𝑋

√
−1𝑝

2

𝑑𝛽 ∧ 𝛼 ∧ 𝛼̄ ∧ 𝜔𝑛−𝑝−1 = 0.

Since (
√
−1) 𝑝2 𝛼 ∧ 𝛼̄ is a semipositive (𝑝, 𝑝)-form, it follows from (4.2.4) that

0 =

∫
𝑋

√
−1𝑝

2

𝑑𝛽 ∧ 𝛼 ∧ 𝛼̄ ∧ 𝜔𝑛−𝑝−1 ≥
∫
𝑋

√
−1𝑝

2

𝛼 ∧ 𝛼̄ ∧ 𝜔𝑛−𝑝−1 ∧ 𝜋∗𝑋Φ ≥ 0.(4.2.5)

Since Φ is smooth and strictly positive over a non-empty analytic open subset
𝑋◦ ⊂ 𝑋. One can show that 𝛼(𝑥) = 0 for any 𝑥 ∈ 𝜋−1

𝑋
(𝑋◦). Since 𝛼 is holomorphic,

it follows that 𝛼 ≡ 0. This proves that 𝐻 (𝑝,0)
(2) (𝑋) = 0 for 𝑝 < 𝑛. By the 𝐿2-Lefschetz

theorem [Gro91], the map

𝐻
(𝑝,0)
(2) (𝑋)

𝜋∗
𝑋
𝜔𝑛−𝑝∧
→ 𝐻

(𝑛,𝑛−𝑝)
(2) (𝑋)

is isomorphic. Hence 𝐻 (𝑛,𝑞)
(2) (𝑋) = 0 for 𝑞 > 0. The theorem is proved when 𝜚 is

semisimple and big.
When the representation 𝜚 is linear and big in the sense of [DW24a], the proof

of the theorem relies on results regarding the linear Shafarevich conjecture estab-
lished in [EKPR12]. Additionally, we must establish a more involved vanishing
theorem than the one presented above (cf. [DW24a, Theorem 2.2]).

4.3. Deformation of big fundamental groups. Let (𝑋, 𝜔) be a compact
Kähler manifold, and let 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C) be a reductive representation.
By Theorem 2.7, there exists a harmonic bundle (𝐸, 𝜃, ℎ) whose associated flat
connection ∇ℎ + 𝜃 + 𝜃∗ has monodromy representation 𝜚. Here ∇ℎ denotes the
Chern connection of (𝐸, ℎ), and 𝜃∗ is the adjoint of 𝜃 with respect to ℎ. It is a
standard exercise to check that the (1, 1)-form

√
−1 tr(𝜃 ∧ 𝜃∗) is real, semipositive,

and closed. Moreover, it does not depend on the choice of the Kähler metric 𝜔.
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Definition 4.3 (Canonical form). Such (1, 1)-form 𝜔𝜚 :=
√
−1tr(𝜃 ∧ 𝜃∗) is called

the canonical form associated with 𝜚.

In [DMW24], we first establish the deformation smoothness of such canonical
forms. Our main result is as follows.

Theorem 4.4 ( [DMW24, Remark 7.8]). Let 𝒳 be a Kähler manifold, and let
𝑓 : 𝒳 → D be a proper holomorphic fibration over the unit disk D. For 𝑡 ∈ D, write
𝑋𝑡 := 𝑓 −1(𝑡). Let 𝜚 : 𝜋1 (𝑋0) → GL𝑁 (C) be a reductive representation, and define

(4.4.1) 𝜚𝑡 : 𝜋1 (𝑋𝑡 )
≃→ 𝜋1 (𝒳) ≃→ 𝜋1 (𝑋0)

𝜚
−→ GL𝑁 (C).

Then the fiberwise defined canonical (1, 1)-form 𝜔𝜚𝑡 on 𝑋𝑡 , associated with the
representation 𝜚𝑡 , varies smoothly with respect to 𝑡 ∈ D.

Another main technical result, and also main difficult result, is the following
consequence of the non-archimedean analogue of Theorem 4.4.

Theorem 4.5 ( [DMW24, Lemma 5.2]). Let 𝑓 : 𝒳 → D be a smooth projective
family of relative dimension 𝑛 over the unit disk D, and let 𝜚 : 𝜋1 (𝑋0) → 𝐺 (𝐾) be
a Zariski-dense representation, where 𝐺 is a reductive algebraic group over a non-
archimedean local field 𝐾. For 𝑡 ∈ D, define

(4.5.1) 𝜚𝑡 : 𝜋1 (𝑋𝑡 )
≃→ 𝜋1 (𝒳) ≃→ 𝜋1 (𝑋0)

𝜚
−→ 𝐺 (𝐾).

There exists a full-measure open subset 𝑋◦
0 ⊂ 𝑋0 such that for any 𝑥0 ∈ 𝑋◦

0 there
exists a coordinate system

(Ω; 𝑧1, . . . , 𝑧𝑛, 𝑡; 𝜑)
on 𝒳 centered at 𝑥0, together with a real (1, 1)-form

𝑇 (𝑧, 𝑡) =
√
−1

∑︁
𝑖, 𝑗

𝑎𝑖 𝑗 (𝑧, 𝑡) 𝑑𝑧𝑖 ∧ 𝑑𝑧̄ 𝑗

on D𝑛 (with 𝑧 = (𝑧1, . . . , 𝑧𝑛)) satisfying

(i) the map 𝜑 : D𝑛×D𝜀 → Ω is a biholomorphism, with 𝑓 ◦𝜑(𝑧1, . . . , 𝑧𝑛, 𝑡) = 𝑡.
(ii) the coefficents 𝑎𝑖 𝑗 (𝑧, 𝑡) are continuous function on D𝑛 × D𝜀.
(iii) For each fixed 𝑡 ∈ D𝜀, 𝑇𝑡 (𝑧) := 𝑇 (𝑧, 𝑡) is a smooth semi-positive closed

(1, 1)-form on D𝑛.
(iv) For each 𝑡 ∈ D𝜀, one has 𝑇𝜚𝑡 |Ω∩𝑋𝑡

≥ 𝑇𝑡 .
(v) 𝑇𝜚0 |Ω∩𝑋0

= 𝑇0.

Here 𝑇𝜚𝑡 is the canonical current defined in Definition 2.23, associated with 𝜚𝑡 .

The proof of Theorem 4.5 relies heavily on the theory of harmonic maps into
Euclidean buildings (and more generally, NPC spaces) as developed by Gromov–
Schoen [GS92], Korevaar–Schoen [KS93,KS97] and later in [BDDM22]. The
argument is quite involved; we refer the interested reader to [DMW24] for a more
detailed exposition.

Let us explain the idea of the proof of Theorem 1.18 in the case where 𝜚 is
reductive and big. Set 𝑋 := 𝑋0 := 𝑓 −1(0). By Remark 2.51, there exist reductive
representations

{𝜏𝑖 : 𝜋1 (𝑋) → GL𝑁 (𝐾𝑖)}𝑖=1,...,ℓ ,
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where each 𝐾𝑖 is a non-archimedean local field of characteristic zero, together with
a C-VHS 𝜎, such that the sum

ℓ∑︁
𝑖=1

𝑇𝜏𝑖 + 𝜔𝜎

satisfies the following properties:

• it is a closed positive (1, 1)-current on 𝑋 with continuous potential;
• it is smooth on a Zariski open subset 𝑋◦ ⊂ 𝑋;
• its cohomology class is big and nef.

Here 𝑇𝜏𝑖 denotes the canonical current associated with 𝜏𝑖, and 𝜔𝜎 is the canonical
form defined in Definition 4.3 associated with the monodromy representation 𝜎 :
𝜋1 (𝑋) → GL𝑁 ′ (C) of the C-VHS L. By Boucksom’s criterion [Bou02], the current

ℓ∑︁
𝑖=1

𝑇𝜏𝑖 + 𝜔𝜎

is smooth and strictly positive on some analytic open subset 𝑈 ⊂ 𝑋◦.
By Theorems 4.4 and 4.5, for 𝑡 sufficiently small, the sum

ℓ∑︁
𝑖=1

𝑇𝜏𝑖,𝑡 + 𝜔𝜎𝑡
(4.5.2)

is strictly positive on some analytic open subset of 𝑋𝑡 . Here 𝜏𝑖,𝑡 : 𝜋1 (𝑋𝑡 ) → 𝐺 (𝐾𝑖)
and 𝜎𝑡 : 𝜋1 (𝑋𝑡 ) → GL𝑁 ′ (C) are the representations induced by 𝜏𝑖 and 𝜎, respec-
tively, as defined in (4.4.1) and (4.5.1).

On the other hand, for any subvariety 𝑍 ⊂ 𝑋𝑡 , if Im
[
𝜋1 (𝑍) → 𝜋1 (𝑋𝑡 )

]
is finite,

then the restrictions 𝑇𝜏𝑖,𝑡 |𝑍 and 𝜔𝜎𝑡
|𝑍 are both trivial. This follows from the func-

toriality of harmonic maps under pullback established in Theorem 2.20, together
with the construction of canonical forms and canonical currents. Consequently,
the reductive Shafarevich morphism of 𝑋𝑡 , whose existence is guaranteed by Theo-
rem 2.40, must be birational for 𝑡 sufficiently small. This shows that 𝑋𝑡 has a big
fundamental group for all sufficiently small 𝑡.

In the general case where 𝜚 is linear and big, we apply the techniques developed
in [EKPR12], together with analytic results on the variation of mixed Hodge
structures, to prove Theorem 1.18. We omit the details here and refer the interested
reader to [DMW24].

4.4. Applications to hyperbolicity. I now give an application of Theo-
rem 1.18 to the hyperbolicity of algebraic varieties under deformation, combining
Theorems 1.36 and 1.37. First, we recall the following classical result on the open-
ness of Brody hyperbolicity.

Theorem 4.6 ( [Dem20, Proposition 1.10]). Let 𝑓 : 𝒳 → D be a holomorphic
proper submersion from a complex manifold 𝒳 to the unit disk with connected fibers.
If 𝑋0 is Brody hyperbolic, then there exists 𝜀 > 0 such that 𝑋𝑡 is Brody hyperbolic
for |𝑡 | < 𝜀.

There has long been a folklore conjecture that such openness properties hold
for pseudo Brody hyperbolicity.

Conjecture 4.7. Let 𝑓 : 𝒳 → D be as in Theorem 4.6. If 𝑋0 is pseudo Brody
hyperbolic, then 𝑋𝑡 is also pseudo Brody hyperbolic for sufficiently small 𝑡.
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This conjecture is indeed a consequence of Conjecture 1.23. Let us explain how
to deduce Conjecture 4.7 from Conjecture 1.23. Assume that 𝑋0 is pseudo Brody
hyperbolic. Then 𝑋0 is of general type by Conjecture 1.23. By Siu’s invariance
of plurigenera [Siu98,Pau07], it follows that 𝑋𝑡 is of general type for any 𝑡 ∈ D.
Applying Conjecture 1.23 again, we conclude that 𝑋𝑡 is pseudo Brody hyperbolic.
This proves Conjecture 4.7.

Theorem 4.8 ( [DMW24, Theorem D]). Let 𝑓 : 𝒳 → D be a smooth projective
family. Assume that there is a big and reductive representation 𝜚 : 𝜋1 (𝑋0) →
GL𝑁 (C). If 𝑋0 is pseudo Brody hyperbolic, then 𝑋𝑡 is pseudo Picard hyperbolic for
sufficiently small 𝑡.

Proof. We apply Theorem 1.37 to conclude that 𝑋0 is of general type. By
Siu’s invariance of plurigenera [Siu98,Pau07], 𝑋𝑡 is of general type for any 𝑡 ∈ D.

By [DYK23, Lemma 3.25], there exists another reductive representation 𝜏 :
𝜋1 (𝑋0) → GL𝑁 (C) such that for any reductive representation 𝜎 : 𝜋1 (𝑋0) →
GL𝑁 (C), we have

ker 𝜏 ⊂ ker𝜎.(4.8.1)

Let 𝜏𝑡 : 𝜋1 (𝑋𝑡 ) → GL𝑁 (C) be the composite map of 𝜏 and the natural isomorphism
𝜋1 (𝑋𝑡 ) → 𝜋1 (𝑋0) induced by 𝑓 .

Claim 4.9. There exists 𝜀 > 0 such that 𝜏𝑡 is a big and reductive representation
for any 𝑡 ∈ D𝜀.

Proof. We use the same notation as in the above subsection. By Theo-
rem 2.40, the Shafarevich morphism

sh𝜏𝑡 : 𝑋𝑡 → Sh𝜏𝑡 (𝑋𝑡 )

exists. It suffices to prove that this morphism is birational for 𝑡 sufficiently close to
0.

Let

{𝜏𝑖 : 𝜋1 (𝑋) → GL𝑁 (𝐾𝑖)}𝑖=1,...,ℓ and 𝜎 : 𝜋1 (𝑋) → GL𝑁 ′ (C)

be the reductive representations appearing in the above proof of Theorem 1.18. Let
𝑍 be a fiber of sh𝜏𝑡 . By (4.8.1), we have

𝜏𝑖,𝑡
(
Im[𝜋1 (𝑍norm) → 𝜋1 (𝑋𝑡 )]

)
finite for each 𝑖.

Recall that in Proposition 2.33, the C-VHS 𝜎 is a direct sum of reductive
representations of 𝜋1 (𝑋) into GL𝑁 (C). By (4.8.1), it follows that

𝜎𝑡
(
Im[𝜋1 (𝑍norm) → 𝜋1 (𝑋𝑡 )]

)
is also finite. Consequently, for the closed positive (1, 1)-current

ℓ∑︁
𝑖=1

𝑇𝜏𝑖 ,𝑡 + 𝜔𝜎,𝑡

defined in (4.5.2), its restriction to 𝑍 is trivial.
By the same arguments as in the proof of Theorem 1.18, we conclude that the

morphism sh𝜏𝑡 : 𝑋𝑡 → Sh𝜏𝑡 (𝑋𝑡 ) is birational for 𝑡 sufficiently small. □
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Since 𝑋𝑡 is of general type, it follows from Claim 4.9 and Theorem 1.37 that 𝑋𝑡
is pseudo Picard hyperbolic for any 𝑡 ∈ D𝜀. □

Corollary 4.10 ( [DMW24, Corollary E]). Let 𝑋 be a smooth projective variety.
Assume that either

(a) there is C-VHS for short 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C) with discrete monodromy
Γ such that the period map 𝑋 → 𝒟/Γ is generically finite onto the image,
or

(b) there is a big representation 𝜏 : 𝜋1 (𝑋) → GL𝑁 (C) such that the Zariski
closure of 𝜏(𝜋1 (𝑋)) is a semisimple algebraic group.

Then every small projective deformation of 𝑋 is pseudo Picard hyperbolic.

Proof. In Case (a), by the work of Griffiths-Schmid [GS69], the period do-
main 𝒟 is equipped with a natural metric that has negative holomorphic sectional
curvature along the horizontal direction. Since the period map of 𝜚 is assumed to
be generically finite onto its image, it follows from the Ahlfors-Schwarz lemma that
𝑋 is pseudo Brody hyperbolic.

On the other hand, by Lemma 2.28, 𝜚 is big. By Theorem 2.7, 𝜚 is also
reductive. Hence, the conditions in Theorem 4.8 are fulfilled, allowing us to conclude
that a small projective deformation of 𝑋 is pseudo Picard hyperbolic.

In Case (b), by Theorem 1.36, 𝑋 is pseudo Brody hyperbolic. We apply Theo-
rem 4.8 to conclude that a small deformation of 𝑋 is pseudo Picard hyperbolic. □

5. Some further applications

In this section, we present several applications of our hyperbolicity results in
Theorem 1.36.

5.1. Special and ℎ-special varieties. We first recall the definition of special
varieties by Campana [Cam04,Cam11].

Definition 5.1 (Campana’s specialness). Let 𝑋 be a quasi-projective normal va-
riety.

(i) 𝑋 is weakly special if for any finite étale cover 𝑋 → 𝑋 and any proper

birational modification 𝑋 ′ → 𝑋, there exists no dominant morphism 𝑋 ′ →
𝑌 with connected general fibers such that 𝑌 is a positive-dimensional quasi-
projective variety of log general type.

(ii) 𝑋 is special if for any proper birational modification 𝑋 ′ → 𝑋 there is
no dominant morphism 𝑋 ′ → 𝑌 to with connected general fibers over
a positive-dimensional quasi-projective variety 𝑌 such that the Campana
orbifold base (or simply orbifold base) is of log general type.

(iii) 𝑋 is Brody special if it contains a Zariski dense entire curve.

Campana defined 𝑋 to be 𝐻-special if 𝑋 has vanishing Kobayashi pseudo-
distance. Motivated by [Cam11, 11.3 (5)], in [CDY25c, Definition 2.2] we intro-
duce the following definition.

Definition 5.2 (ℎ-special). Let 𝑋 be a smooth quasi-projective variety. We define
the equivalence relation 𝑥 ∼ 𝑦 of two points 𝑥, 𝑦 ∈ 𝑋 iff there exists a sequence of
holomorphic maps 𝑓1, . . . , 𝑓𝑙 : C → 𝑋 such that letting 𝑍𝑖 ⊂ 𝑋 to be the Zariski
closure of 𝑓𝑖 (C), we have

𝑥 ∈ 𝑍1, 𝑍1 ∩ 𝑍2 ≠ ∅, . . . , 𝑍𝑙−1 ∩ 𝑍𝑙 ≠ ∅, 𝑦 ∈ 𝑍𝑙 .
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We set 𝑅 = {(𝑥, 𝑦) ∈ 𝑋×𝑋; 𝑥 ∼ 𝑦}. We define 𝑋 to be hyperbolically special (ℎ-special
for short) iff 𝑅 ⊂ 𝑋 × 𝑋 is Zariski dense.

By definition, rationally connected projective varieties are ℎ-special without
referring to a theorem of Campana and Winkelmann [CW23], who proved that all
rationally connected projective varieties contain Zariski dense entire curves.

In [Cam04,Cam11], Campana proposed the following tantalizing abelianity
conjecture.

Conjecture 5.3 (Campana). A special smooth quasi-projective variety has virtu-
ally abelian fundamental group.

In [CDY25c] we discovered that Conjecture 5.3 fails for non-proper quasi-
projective variety.

5.2. Campana’s conjecture revisited. In [CDY25c, Example 4.26], we
constructed a smooth quasi-projective variety such that it is both special and Brody
special, yet it has nilpotent fundamental group that is not virtually abelian. Later,
Aguilar-Campana [AAC25] also gave another simpler construction of such exam-
ples. We first recall the following definition.

Definition 5.4 (nilpotent group). A group 𝐺 is nilpotent if it has a central series
of finite length. That is, a series of normal subgroups

{1} = 𝐺0 ⊳ 𝐺1 ⊳ · · · ⊳ 𝐺𝑛 = 𝐺
such that 𝐺𝑖+1/𝐺𝑖 ≤ 𝑍 (𝐺/𝐺𝑖). For a nilpotent group 𝐺, the smallest 𝑛 such that
𝐺 has a central series of length 𝑛 is called the nilpotency class of 𝐺; and 𝐺 is said
to be nilpotent of class 𝑛.

The following example is given in [AAC25].

Example 5.5. Let 𝐿 be a holomorphic line bundle 𝐿 over an elliptic curve 𝐵 such
that 𝑐1 (𝐿) ≠ 0. Let 𝑋 be 𝐿∗, that is the complement of the zero and infinity sections
of P(𝐿 ⊕ O𝐵) → 𝑋. Then it is a C∗-fibration over the elliptic curve. By the Gysin
sequence, we have

0 → 𝐻1 (𝐵,Z) 𝜋∗→ 𝐻1 (𝑋,Z) → 𝐻0 (𝐵,Z)
·𝑐1 (𝐿)→ 𝐻2 (𝐵,Z) → 𝐻2 (𝑋,Z) → 𝐻1 (𝐵,Z) → · · ·

(5.5.1)

where 𝜋 : 𝑋 → 𝐵 is the projection map. Therefore, if 𝑐1 (𝐿) ≠ 0,

𝜋∗ : 𝐻1 (𝐵,Z)→𝐻1 (𝑋,Z)
is an isomorphism. It follows that 𝜋1 (𝑋) is then a central extension of 𝜋1 (𝐵) by Z,
hence is torsionfree, and nilpotent of class 2.

Consequently, in the quasi-projective setting, we revised Conjecture 5.3 as fol-
lows.

Conjecture 5.6. A special or ℎ-special smooth quasi-projective variety has virtually
nilpotent fundamental group.

We propose the following stronger conjecture. Similar questions were also in-
dependently asked in [AAC25,Rog25].

Conjecture 5.7. Let 𝑋 be a smooth quasi-projective variety that is either special
or ℎ-special. Then its fundamental group 𝜋1 (𝑋) is virtually nilpotent of class 2.
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Shimoji has proved some interesting results on this conjecture, see [Shi25]. Ro-
gov [Rog25] also proposed some strategy in proving this conjecture using higher
Albanese maps by Hain and o-minimal geometry.

5.3. Nilpotency conjecture in the linear case. In [CDY25c,DY25],
we confirm Conjecture 5.6 for quasi-projective varieties with linear fundamental
groups.

Theorem 5.8. Let 𝑋 be a special or ℎ-special smooth quasiprojective variety.
Let 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) be a linear representation where 𝐾 is any field.

(i) [CDY25b, Theorem A] If char𝐾 = 0, then the image 𝜚(𝜋1 (𝑋)) is vir-
tually nilpotent.

(ii) [DY25, Theorem G] If char𝐾 > 0, then 𝜚(𝜋1 (𝑋)) is virtually abelian.

By Example 5.5, Theorem 5.8 is shown to be sharp. Surprisingly, in the context
of representations in positive characteristic, we obtain a stronger result.

Proof of Theorem 5.8. Step 1. We prove that 𝜚(𝜋1 (𝑋)) is solvable. We may
assume that 𝐾 is algebraically closed. Let 𝐺 be the Zariski closure of 𝜚(𝜋1 (𝑋)).
By [Cam11], any finite étale cover of a special (resp. ℎ-special) variety is still
special (resp. ℎ-special). After replacing 𝑋 by a finite étale cover, we may assume
that 𝐺 is connected. Let 𝑅(𝐺) be the radical of 𝐺. Let 𝐻 := 𝐺/𝑅(𝐺), which
is semisimple. If dim𝐻 > 0, then 𝜚 induces a Zariski dense representation 𝜎 :
𝜋1 (𝑋) → 𝐻 (𝐾). We can prove that, after replacing 𝑋 by a composition of birational
modifications and finite étale Galois covers, there exists a a dominant morphism
𝑓 : 𝑋 → 𝑌 over a smooth quasi-projective variety 𝑌 with connected general fibers,
and a big and Zariski dense representation 𝜏 : 𝜋1 (𝑌 ) → 𝐻 (𝐾) such that 𝜎 = 𝑓 ∗𝜏.
By Theorem 1.36, 𝑌 is of log general type and pseudo Picard hyperbolic. This leads
to a contradiction since 𝑋 is special (thus weakly special by [Cam11]) or ℎ-special.
Hence 𝐺 = 𝑅(𝐺).

Step 2. We prove that 𝜚(𝜋1 (𝑋)) is virtually abelian if char𝐾 > 0. Note that any
finite étale cover of a special (resp. ℎ-special) variety is still special (resp. ℎ-
special) by [Cam04] and [CDY25c, Lemma 3.2]. Replacing 𝑋 by a finite étale
cover, we may assume that 𝜋1 (𝑋)𝑎𝑏 → 𝜋1 (𝐴) is an isomorphism, where 𝜋1 (𝑋)𝑎𝑏 :=
𝜋1 (𝑋)/[𝜋1 (𝑋), 𝜋1 (𝑋)]. Since 𝑋 is special or ℎ-special, by [CDY25c, Proposition
4.13], the quasi-albanese map 𝑎 : 𝑋 → 𝐴 of 𝑋 is 𝜋1-exact, i.e., we have the following
exact sequence:

𝜋1 (𝐹) → 𝜋1 (𝑋) → 𝜋1 (𝐴) → 1,

where 𝐹 is a general fiber of 𝑎. Hence [𝜋1 (𝑋), 𝜋1 (𝑋)] is the image of 𝜋1 (𝐹) →
𝜋1 (𝑋), which is thus finitely generated. It implies that [𝜚(𝜋1 (𝑋)), 𝜚(𝜋1 (𝑋))] =

𝜚( [𝜋1 (𝑋), 𝜋1 (𝑋)]) is also finitely generated. By Step 1, 𝐺 is solvable. Hence we
have D𝐺 ⊂ 𝑅𝑢 (𝐺), where 𝑅𝑢 (𝐺) is the unipotent radical of 𝐺 and D𝐺 is the the
derived group of 𝐺. Consequently, we have

[𝜚(𝜋1 (𝑋)), 𝜚(𝜋1 (𝑋))] ⊂ [𝐺 (𝐾), 𝐺 (𝐾)] ⊂ 𝑅𝑢 (𝐺) (𝐾).
Note that every subgroup of finite index in [𝜋1 (𝑋), 𝜋1 (𝑋)] is also finitely generated
(cf. [ST00, Proposition 4.17]. By the same arguments in Lemma 2.36, we conclude
that [𝜚(𝜋1 (𝑋)), 𝜚(𝜋1 (𝑋))] is finite. Hence 𝜚(𝜋1 (𝑋)) is virtually abelian.
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Step 3. We prove that 𝜚(𝜋1 (𝑋)) is virtually nilpotent if char𝐾 = 0 . The proof is
non-trivial and based on 5.9 below. □

Theorem 5.9 ( [CDY25b, Theorem 11.3]). Let 𝑋 be a special or ℎ-special
quasi-projective manifold. Let 𝐺 be a connected, solvable algebraic group defined
over C. Assume that there exists a Zariski dense representation 𝜑 : 𝜋1 (𝑋) → 𝐺.
Then 𝐺 is nilpotent. In particular, 𝜑(𝜋1 (𝑋)) is nilpotent. □

The proof of Theorem 5.9 is involved. It is inspired by [Cam01] and is based on
the 𝜋1-exactness of the quasi-Albanese morphism mentioned above, together with
Deligne’s theorem asserting that the radical of the algebraic monodromy group of
an admissible variation of mixed Hodge structures is unipotent. We refer the reader
to [CDY25c, § 4] for details of the proof.

In a forthcoming paper, Cao, Hacon, Păun, and the author [CDHP25a] de-
velop Hodge theory for local systems over quasi-projective varieties, extending our
previous techniques on Hodge theory for rank-one local systems over quasi-compact
Kähler manifolds [CDHP25b]. As a consequence, we refine Theorem 5.8.(i) by
proving that 𝜚(𝜋1 (𝑋)) is nilpotent of class 2. This result establishes Conjecture 5.7
in the case where the fundamental group is linear.

5.4. Algebraic varieties with compactifiable universal coverings. In
the work [CHK13,CH13], Claudon, Höring and Kollár proposed the following
intriguing conjecture:

Conjecture 5.10. Let 𝑋 be a complex projective manifold with infinite fundamental
group 𝜋1 (𝑋). Suppose that the universal cover 𝑋 is quasi-projective. Then after
replacing 𝑋 by a finite étale cover, there exists a locally trivial fibration 𝑋 → 𝐴

with simply connected fiber 𝐹 onto a complex torus 𝐴. In particular we have 𝑋 ≃
𝐹 × Cdim 𝐴.

It’s worth noting that assuming abundance conjecture, Claudon, Höring and
Kollár proved this conjecture in [CHK13]. In [CH13], Claudon-Höring proved
Conjecture 5.10 in the case where 𝜋1 (𝑋) is virtually abelian.

In this subsection we establish a linear version of Conjecture 5.10 without
relying on the abundance conjecture.

Theorem 5.11 ( [DY25, Corollary G]). Conjecture 5.10 holds if there exists
a faithful representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾), where 𝐾 is any field.

Proof. By [CH13], it suffices to prove that 𝜋1 (𝑋) is virtually abelian. Con-
sider the core map

𝑐𝑋 : 𝑋 d 𝑌 := 𝐶 (𝑋)
defined by Campana, such that the orbifold base of 𝑐𝑋 is of orbifold general type
(see [Cam04]). By the orbifold version of the Kobayashi-Ochiai theorem [Cam04,
Theorem 8.2], the composed meromorphic map

𝑋
𝜋−→ 𝑋

𝑐𝑋
d 𝑌

extends to a meromorphic map from some projective compactification 𝑋 of 𝑋. This
implies that the general fiber 𝐹 of 𝑐𝑋 satisfies that 𝜋−1(𝐹) has only finitely many
connected components. In particular, the induced homomorphism 𝜋1 (𝐹) → 𝜋1 (𝑋)
has image of finite index.
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According to [Cam04], 𝐹 is a special manifold. Since we assume the existence
of a faithful representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾), it follows from Theorem 5.8.(ii)
when char𝐾 > 0 and [Cam04, Theorem 7.8] when char𝐾 = 0 that the image
𝜚( [𝜋1 (𝐹) → 𝜋1 (𝑋)]) is virtually abelian. As the image of 𝜋1 (𝐹) → 𝜋1 (𝑋) has finite
index, 𝜋1 (𝑋) itself is virtually abelian. The conclusion then follows from [CH13,
Theorem 1.5], completing the proof of Theorem 5.11. □

Remark 5.12. Our original proof of Theorem 5.11 was involved and relied essen-
tially on the pseudo Picard hyperbolicity established in Theorem 1.36. The argu-
ments in the above proof were pointed out to us by a referee of [DY25]. Similar
arguments were already used in [CH13].

5.5. A structure theorem: on a conjecture by Kollár. In [Kol95, Con-
jecture 4.18], Kollár raised the following conjecture on the structure of varieties
with big fundamental group.

Conjecture 5.13. Let 𝑋 be a smooth projective variety with big fundamental group
such that 0 < 𝜅(𝑋) < dim 𝑋. Then 𝑋 has a finite étale cover 𝑝 : 𝑋 ′ → 𝑋 such that
𝑋 ′ is birational to a smooth family of abelian varieties over a projective variety of
general type 𝑍 which has big fundamental group.

In this section we address Conjecture 5.13. Our theorem is the following:

Theorem 5.14 ( [CDY25c, Theorem 5.1], [DY25, Corollary H]). Let 𝑋 be a
smooth quasi-projective variety and let 𝜚 : 𝜋1 (𝑋) → GL𝑁 (𝐾) be a big representation
where 𝐾 is any field. When char𝐾 = 0, we assume additionally that 𝜚 is reductive.

(a) The logarithmic Kodaira dimension 𝜅(𝑋) ≥ 0.
(b) More generally, after replacing 𝑋 by a suitable finite étale cover and a bi-

rational modification, there are a semiabelian variety 𝐴, a quasi-projective
manifold 𝑉 , and a birational morphism 𝑎 : 𝑋 → 𝑉 such that we have the
following commutative diagram

𝑋 𝑉

𝐽 (𝑋)

𝑎

𝑗

ℎ

where 𝑗 is the logarithmic Iitaka fibration and ℎ : 𝑉 → 𝐽 (𝑋) is a locally
trivial fibration with fibers isomorphic to 𝐴. Moreover, for a general fiber
𝐹 of 𝑗 , 𝑎 |𝐹 : 𝐹 → 𝐴 is proper in codimension one.

Proof. We may assume that 𝐾 is algebraically closed. To prove the theorem
we are free to replace 𝑋 by a birational modification and by a finite étale cover since
the logarithmic Kodaira dimension will remain unchanged. If char𝐾 > 0, we replace
𝜚 by its semisimplification, which remains big by Lemma 2.36. Hence we might
assume that 𝜚 is big and semisimple. Consequently, after replacing 𝑋 by a finite
étale cover, the Zariski closure 𝐺 of 𝜚 is reductive and connected. Let D𝐺 be the
derived group of 𝐺, which is semisimple. Let 𝑍 ⊂ 𝐺 be the maximal central torus of
𝐺. Then 𝑇 := 𝐺/D𝐺 is a torus and 𝑆 := 𝐺/𝑍 is semisimple. The natural morphism
𝐺 → 𝑆×𝑇 is a central isogeny. The induced representation 𝜚′ : 𝜋1 (𝑋) → 𝑆(𝐾)×𝑇 (𝐾)
by 𝜚 is also big. Consider the representation 𝜎 : 𝜋1 (𝑋) → 𝑆(𝐾), obtained by
composing 𝜚 with the morphism 𝐺 → 𝑆. Then 𝜎(𝜋1 (𝑋)) is Zariski dense.
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We then prove the following factorization theorem (cf. [DY25, Proposition 5.9])b:
there exist

(i) a generically finite, proper, surjective morphism 𝜇 : 𝑋1 → 𝑋 from a smooth
quasi-projective variety, obtained as a composition of birational modifica-
tions and finite étale Galois covers;

(ii) a dominant morphism 𝑓1 : 𝑋1 → 𝑌1, where 𝑌1 is a smooth quasi-projective
variety with connected general fibers;

(iii) a big and Zariski dense representation 𝜏 : 𝜋1 (𝑌1) → 𝑆(𝐾);
such that 𝜇∗𝜎 = 𝑓 ∗1 𝜏. Note that 𝑌1 may be a point. If dim𝑌1 > 0, then by
Theorem 1.36, 𝑌1 is strongly of log general type.

Claim 5.15. For a general smooth fiber 𝐹 of 𝑓1, we have dim 𝐹 = dim𝛼(𝐹)

Proof. Note that 𝜇∗𝜎(Im[𝜋1 (𝐹) → 𝜋1 (𝑋)]) is trivial. Since 𝜇∗𝜚′ : 𝜋1 (𝑋1) →
𝑆(𝐾) × 𝑇 (𝐾) is big, by the construction of 𝜎, we conclude that the representation
𝜂 : 𝜋1 (𝐹) → 𝑇 (𝐾) obtained by

𝜋1 (𝐹) → 𝜋1 (𝑋1)
𝜇∗ 𝜚′

→ 𝑆(𝐾) × 𝑇 (𝐾) → 𝑇 (𝐾)
is big. Since 𝑇 (𝐾) is commutative, 𝜂 factors through 𝜋1 (𝐹) → 𝜋1 (𝐴) → 𝑇 (𝐾). This
implies that dim 𝐹 = dim𝛼(𝐹). □

Let us prove item (a). By Claim 5.15, for a general smooth fiber 𝐹 of 𝑓1,
𝜅(𝐹) ≥ 0. Since 𝑌1 is of log general type, by the subadditivity of the logarithmic
Kodaira dimension proven in [Fuj17, Theorem 1.9], we obtain

𝜅(𝑋1) ≥ 𝜅(𝑌1) + 𝜅(𝐹) ≥ 𝜅(𝑌1) = dim𝑌1 ≥ 0.

Hence 𝜅(𝑋) = 𝜅(𝑋1) ≥ 0. The first claim is proved.

We proceed to prove the second assertion. For simplicity, we assume that the
logarithmic Iitaka fibration 𝑗 : 𝑋1 → 𝐽 (𝑋1) is regular. Let 𝑋𝑡 := 𝑗−1(𝑡) for any
𝑡 ∈ 𝑌1.

Claim 5.16. 𝑓1 (𝑋𝑡 ) is a point for very generic 𝑡 ∈ 𝐽 (𝑋1).

Proof. Since 𝑓1 is dominant and 𝑌1 is strongly of log general type, 𝑓1 (𝑋𝑡 )
is of log general type for generic 𝑡 ∈ 𝐽 (𝑋). Now, let us take a very generic
𝑡 ∈ 𝐽 (𝑋). To show that 𝑓1 (𝑋𝑡 ) is a point, suppose for the sake of contradiction

that dim 𝑓1 (𝑋𝑡 ) > 0. Then 𝜅( 𝑓1 (𝑋𝑡 )) = dim 𝑓1 (𝑋𝑡 ). Since 𝜅(𝑋𝑡 ) = 0, the general

fibers of the restriction 𝑓1 |𝑋𝑡
: 𝑋𝑡 → 𝑓1 (𝑋𝑡 ) have non-negative logarithmic Kodaira

dimension. By [Fuj17, Theorem 1.9] again, it follows that 𝜅(𝑋𝑡 ) ≥ 𝜅( 𝑓1 (𝑋𝑡 )) > 0.
This yields a contradiction. Thus, 𝑓1 (𝑋𝑡 ) is a point. □

By Claims 5.15 and 5.16, for very generic 𝑡 ∈ 𝐽 (𝑋1), we have dim 𝑋𝑡 = dim𝛼(𝑋𝑡 ).
By the birational criterion for semi-abelian varieties in [CDY25a, Proof of Lemma
1.4], the closure of 𝛼(𝑋𝑡 ) is a semi-abelian subvariety of 𝐴. As there are at most
countably many semi-abelian subvarieties of 𝐴, we conclude that the images of the
very general fibers of 𝑓1 are isomorphic. This roughly shows the second assertion.

□

bThe main difficulty arises in the case char𝐾 > 0, since Selberg’s lemma—asserting that a
finitely generated linear group is virtually torsion-free—is no longer available.
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Remark 5.17. If we assume the logarithmic abundance conjecture: a smooth
quasi-projective variety is A1-uniruled if and only if 𝜅(𝑋) = −∞, then it predicts
that 𝜅(𝑋) ≥ 0 if there is a big representation 𝜚 : 𝜋1 (𝑋) → GL𝑁 (C), which is
slightly stronger than the first claim in Theorem 5.14. Indeed, since 𝜚 is big, 𝑋 is
not A1-uniruled and thus 𝜅(𝑋) ≥ 0 by this conjecture.

Convention and notation

In this paper, we use the following conventions and notations:

• Quasi-projective varieties and their closed subvarieties are assumed to be
positive-dimensional and irreducible unless specifically mentioned other-
wise. Zariski closed subsets, however, may be reducible.

• Fundamental groups are always referred to as topological fundamental
groups.

• If 𝑋 is a complex space, we denote by 𝑋norm its normalization, and by
𝑋reg its smooth locus.

• D denotes the unit disk in C, and D∗ denotes the punctured unit disk.
• A finitely generated group Γ is called linear if it admits an almost faithful
representation 𝜚 : Γ → GL𝑁 (C), i.e. such that ker 𝜚 is finite. It is called
reductive if, moreover, 𝜚 is semisimple.

• For a complex algebraic variety 𝑋, unless otherwise specified, we denote by
𝜋𝑋 : 𝑋 → 𝑋 its universal covering map. More generally, for any normal
subgroup Γ ⊂ 𝜋1 (𝑋), we denote by 𝑋Γ → 𝑋 the Galois covering of 𝑋
with Galois group 𝜋1 (𝑋)/Γ. For any representation 𝜚 : Γ → GL𝑁 (𝐾), we
denote by 𝑋𝜚 → 𝑋 the Galois covering of 𝑋 with Galois group 𝜋1 (𝑋)/ker 𝜚.

• A proper holomorphic fibration between complex spaces, is a proper holo-
morphic map such that each fiber is connected.

• A C-VHS (resp. Z-VHS) denotes a complex (resp. integral) polarized
variation of Hodge structure.

• The reductive (resp. linear) Shafarevich conjecture refers to the Shafare-
vich conjecture for projective varieties with reductive (resp. linear) fun-
damental groups.

• A group 𝐺 is said to be virtually 𝑃 if it contains a subgroup of finite index
that has property 𝑃.

• For a smooth complex quasi-projective variety 𝑋, unless otherwise spec-
ified, we assume that 𝑋 is a smooth compactification of 𝑋 such that the
boundary 𝐷 := 𝑋 \ 𝑋 is a simple normal crossing divisor.
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↑ 11, 12
[DM23a] Georgios Daskalopoulos and Chikako Mese, Infinite energy harmonic maps from Rie-

mann surfaces to CAT(0) spaces, J. Geom. Anal. 33 (2023), no. 10, Paper No. 337,

23. MR 4626499 ↑ 24
[DM23b] , Notes on Harmonic Maps, arXiv e-prints (2023), arXiv:2301.04190. ↑ 18

[DM23c] , Uniqueness of equivariant harmonic maps to symmetric spaces and build-

ings, Math. Res. Lett. 30 (2023), no. 6, 1639–1655. MR 4779149 ↑ 24
[DM24] , Infinite energy harmonic maps from quasi-compact Kähler surfaces, Adv.

Nonlinear Stud. 24 (2024), no. 1, 103–140. MR 4727583 ↑ 24

[DM26] Ya Deng and Chikako Mese, Existence and unicity of pluriharmonic maps to eu-
clidean buildings and applications, New Aspects of Teichmüller Theory, Adv. Stud.

Pure Math., Math. Soc. Japan, Tokyo, 2026, to appear. ↑ 22, 23, 24, 25, 35

[DMR10] Simone Diverio, Joël Merker, and Erwan Rousseau, Effective algebraic degeneracy,
Invent. Math. 180 (2010), no. 1, 161–223. MR 2593279 ↑ 14

[DMV11] Georgios Daskalopoulos, Chikako Mese, and Alina Vdovina, Superrigidity of hyper-
bolic buildings, Geom. Funct. Anal. 21 (2011), no. 4, 905–919. MR 2827014 ↑ 24

[DMW24] Ya Deng, Chikako Mese, and Botong Wang, Deformation Openness of Big Funda-

mental Groups and Applications, arXiv e-prints (2024), arXiv:2412.08636. ↑ 9, 14,
52, 53, 54, 55

[dOKR02] B. de Oliveira, L. Katzarkov, and M. Ramachandran, Deformations of large funda-

mental groups, Geom. Funct. Anal. 12 (2002), no. 4, 651–668. MR 1935545 ↑ 9
[Don87a] S. K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J.

54 (1987), no. 1, 231–247. MR 885784 ↑ 17

[Don87b] , Twisted harmonic maps and the self-duality equations, Proc. London Math.
Soc. (3) 55 (1987), no. 1, 127–131. MR 887285 ↑ 16
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Supér. (4) 26 (1993), no. 3, 361–401 (English). ↑ 16, 40

[Sim94a] , Moduli of representations of the fundamental group of a smooth projective

variety. I, Inst. Hautes Études Sci. Publ. Math. (1994), no. 79, 47–129. MR 1307297
↑ 21

[Sim94b] , Moduli of representations of the fundamental group of a smooth projective

variety. II, Inst. Hautes Études Sci. Publ. Math. (1994), no. 80, 5–79. MR 1320603

↑ 21

[Siu80] Yum Tong Siu, The complex-analyticity of harmonic maps and the strong rigidity of
compact Kähler manifolds, Ann. of Math. (2) 112 (1980), no. 1, 73–111. MR 584075

↑ 16

[Siu87] , Strong rigidity for Kähler manifolds and the construction of bounded holo-
morphic functions, Discrete groups in geometry and analysis (New Haven, Conn.,
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