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Abstract
In 1988 Simpson extended the Donaldson–Uhlenbeck–Yau theorem to the context of
Higgs bundles, and as an application he proved a uniformization theorem which char-
acterizes complex projective manifolds and quasi-projective curves whose universal
coverings are complex unit balls. In this paper we give a necessary and sufficient
condition for quasi-projective manifolds to be uniformized by complex unit balls.
This generalizes the uniformization theorem by Simpson. Several byproducts are also
obtained in this paper.
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1 Introduction

1.1 Main result

The main goal of this paper is to characterize complex quasi-projective manifolds
whose universal coverings are complex unit balls.

Theorem A (=Theorem 5.7.(i)) Let X be an n-dimensional complex projective man-
ifold and let D be a smooth divisor on X (which might contain several disjoint
components). Let L be an ample polarization on X. For the log Higgs bundle
(�1

X (log D) ⊕ OX , θ) on (X , D) with the Higgs field θ defined by

θ : �1
X (log D) ⊕ OX → (�1

X (log D) ⊕ OX ) ⊗ �1
X (log D)

(a, b) �→ (0, a), (1.1.1)

if it is μL-polystable (see Sect. 2.3 for the definition), then one has the following
inequality

(
2c2(�

1
X (log D)) − n

n + 1
c1(�

1
X (log D))2

) · c1(L)n−2 ≥ 0. (1.1.2)

When the equality holds, then X − D � B
n
/� for some torsion free lattice � ⊂

PU (n, 1) acting on B
n. Moreover, X is the (unique) toroidal compactification of

B
n
/�, and each connected component of D is the smooth quotient of an Abelian

variety A by a finite group acting freely on A.

Let us stress here that the smoothness of D in Theorem A is indeed necessary if one
would like to characterize non-compact ball quotients: in Theorem 5.7.(ii) we prove
that the universal cover of X − D is not the complex unit ball B

n if D is assumed
to be simple normal crossing but not smooth, leaving other conditions in Theorem
A unchanged. Thus, it might be more appropriate to say that in this paper we give a
characterization of smooth toroidal compactification of non-compact ball quotients.

Note that when D is empty or when dim X = 1, Theorem A has already been
proved by Simpson [51, Proposition 9.8]. As we will see later, we follow his strategy
closely to prove the above theorem. Let us also mention that the inequality (1.1.2) is
a direct consequence of Mochizuki’s deep work on the Bogomolov-Gieseker inequal-
ity for parabolic Higgs bundles [40, Theorem 6.5]. Our main contribution is the
uniformization result when the equality in (1.1.2) is achieved. The proof builds on
Simpson’s ingenious ideas [51] on characterizations of complete varieties uniformized
by Hermitian symmetric spaces, as well as Mochizuki’s celebrated work on Simpson
correspondence for tame harmonic bundles [40]. Since the Kobayashi-Hitchin corre-
spondence for general slope polystable parabolic Higgs bundles is still unproven, we
need some additional methods to prove the above uniformization result (see Sect. 1.3
for rough ideas).

We will show that the conditions in Theorem A is indeed necessary, by proving the
following slope stability (with respect to a more general polarization) result for the

123



A characterization of complex quasi-projective…

natural log Higgs bundles associated to toroidal compactification of non-compact ball
quotient by torsion free lattice.

Theorem B (=Sect. 6.4) Let� ⊂ PU (n, 1) be a torsion free lattice with only unipotent
parabolic elements. Let X be the (smooth) toroidal compactification of the ball quotient
B
n
/�. Write D := X − B

n
/� for the boundary divisor, which is a disjoint union of

Abelian varieties. Let α ∈ H1,1(X , R) be a big and nef cohomology (1, 1)-class on X
containing a positive closed (1, 1)-current T ∈ α so that T |X−D is a smooth Kähler
form and has at most Poincaré growth near D (for example, α = c1(KX + D) or α

contains a Kähler form ω). Then one has the following equality for Chern classes

2c2(�
1
X (log D)) − n

n + 1
c1(�

1
X (log D))2 = 0. (1.1.3)

The log Higgs bundle (�1
X (log D) ⊕ OX , θ) defined in (1.1.1) is μα-polystable for

the above big and nef polarization α. In particular, it is slope polystable with respect
to any Kähler polarization and the polarization by the big and nef class c1(KX + D).

Since both stability of logHiggs bundles and Chern equality (1.1.3) are invariant under
taking conjugates with respect to the Galois action, a direct consequence of Theorems
A and B is the following rigidity result of ball quotient under the automorphism of
complex number field C to its coefficients of defining equations.

Corollary C Let � ⊂ PU (n, 1) be a torsion free lattice, and let X := B
n
/� be the

ball quotient, which carries a unique algebraic structure, denoted by Xalg. For any
automorphism σ ∈ Aut(C), let Xσ

alg := Xalg ×σ Spec(C) be the conjugate variety of
Xalg under the automorphism σ , and denote by Xσ the analytification of Xσ

alg. Then
Xσ is also a ball quotient, namely there is another torsion free lattice �σ ⊂ PU (n, 1)
so that Xσ = B

n
/�σ .

When � is arithmetic, Corollary C has been proved by Kazhdan [30]. When � is
non-arithmetic, it was proved by Mok–Yeung [46, Theorem 1] and by Baldi-Ullmo
[10, Theorem 8.4.2].

In this paper we obtain some byproducts, and let us mention a few. We prove the
Simpson–Mochizuki correspondence for principal system of log Hodge bundles over
projective log pairs (see Theorem 4.1). We give a characterization of slope stability
with respect to big and nef classes for log Higgs bundles on Kähler log pairs (see
Theorem 6.7). We also give a very simple proof of the negativity of kernels of Higgs
fields of tame harmonic bundles by Brunebarbe [9] (originally by Zuo [60] for system
of log Hodge bundles), using some extension theorems of plurisubharmonic functions
in complex analysis (see Theorem 5.6). In the appendix written jointly with Benoît
Cadorel, we prove ametric rigidity result for toroidal compactification of non-compact
ball quotients (see Theorem A.7).

1.2 A few histories

Since themain purpose of this paper is to prove the uniformization result rather than the
Miyaoka–Yau type inequality (1.1.2), we shall only recall some earlier work related
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to the characterization of ball quotient, and we refer the readers to [24,25] for more
references on the Miyaoka–Yau type inequalities.

Based on his proof of the Calabi conjecture [57], Yau established the inequality
(1.1.2) when X is a projective manifold and D = ∅ with KX ample. He proved
that X is uniformized by the complex unit ball in case of equality. Miyaoka–Yau
inequality and uniformization result were extended to the context of compact Kähler
varietieswith quotient singularities byCheng–Yau [16] using orbifoldKahler–Einstein
metrics. A partial uniformization result for smooth minimal models of general type
have been obtained by Zhang [59]. More recently, uniformization result has been
extended to projective varieties with klt singularities in the series of work [22,23] by
Greb–Kebekus–Peternell–Taji.

All the above works dealt with compact varieties. A strong uniformization result
was established by Kobayashi [33,34] in the case of open orbifold surfaces (see also
[16]). In [16] Cheng–Yau also gave a differential geometric characterization of quasi-
projective ball quotients of any dimensions using the method of bounded geometry in
[15]. At almost the same time, based on [16], Tian–Yau [56] and Tsuji [55] indepen-
dently established similar algebraic geometric characterizations of non-compact ball
quotient of any dimension. See also [32,35,58] for more related works on uniformiza-
tion results.

All these aforementioned uniformization results are built on the positivity of the
(log) canonical sheaf of the varieties together with existence of Kähler–Einstein met-
rics. In [51], Simpson established a remarkable uniformization result in terms of
stability of Higgs bundles. We essentially follow his approaches in this paper. In
next subsection, we shall recall his ideas and discuss main difficulties in generalizing
his methods to the context of non-compact varieties.

1.3 Main strategy

We mainly follow Simpson’s strategy [51] to prove Theorem A. Let us explain our
rough ideas in the proof of Theorem A when the equality in (1.1.2) holds.
Step 1. Following Simpson in the compact setting, we first define systems of log
Hodge bundles over log pairs. We prove that, a system of log Hodge bundles on a
projective log pair with vanishing first and second Chern classes admits an adapted
Hodge metric. The proof is based on Mochizuki’s celebrated theorem [40, Theorem
9.4] on the existence of harmonic metric, and C

∗-action invariant property of log
Hodge bundles.
Step 2. We generalize the result in Step 1 to the context of principal bundles. Fix
a Hodge group G0. Following Simpson again, we define a principal system of log
Hodge bundles (P, τ ) on log pairs (X , D) with the structure group K ⊂ G, where
G is the complexification of G0. Based on the result in Step 1 together with some
similar Tannakian arguments in [52], in Theorem 4.1 we prove that if there is a faith-
ful Hodge representation ρ : G → GL(V ) for some polarized Hodge structure
(V = ⊕i+ j=wV i, j , hV ) so that the system of log Hodge bundles (P ×K V , dρ(τ)) is
μL -polystable with

∫
X ch2(P ×K V ) · c1(L)dim X−2 = 0, then there is a metric reduc-
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tion PH for P|X−D so that the triple (P|X−D, τ |X−D, PH ) gives rise to a principal
variation of Hodge structures on X − D.
Step 3. For the system of log Hodge bundles (E := �1

X (log D)⊕OX , θ) in Theorem
A, we first associate it a principal system of log Hodge bundles (P, τ ) in Proposition
3.11, whose Hodge group G0 = PU (n, 1) is of Hermitian type (see Definition 3.5).
One can easily show that c2(P ×K g) = c2(End(E)⊥) = 0 when the equality in
(1.1.2) holds, where End(E)⊥ denotes the trace free part of End(E). By Theorem
2.9, the system of log Hodge bundles (P ×K g, d(Ad)(τ )) = (End(E)⊥, θEnd(E)⊥)

is also slope polystable if (E, θ) is slope polystable. Since the adjoint representation
Ad : G → GL(g) is a faithful Hodge representation, by the result in Step 2, there is
a metric reduction PH for P|X−D so that the triple (P|X−D, τ |X−D, PH ) gives rise
to a principal variation of Hodge structures on X − D. Since τ : TX (− log D) →
P ×K g−1,1 is an isomorphism, this implies that the period map p : X̃ − D →
PU (n, 1)/U (n) associated to (P|X−D, τ |X−D, PH ) from the universal cover X̃ − D
of X − D to the period domain G0/K0 = PU (n, 1)/U (n) is locally biholomorphic.
For more details, see Step one of the proof of Theorem 5.7.
Step 4.Wehave to prove that the periodmap p in Step 3 ismoreover a biholomorphism.
Note that when D = ∅, this step is quite easy. In Remark 3.7 we show that it suffices
to prove that the hermitian metric τ ∗hH on X − D is complete, where hH is the
hermitian metric on P ×K g−1,1|X−D induced by the metric reduction PH together
with the Killing form of g. This step is slightly involved and the readers can find it in
Step two of the proof of Theorem 5.7. To be brief, we establish a precise model metric
(ansatz) for (E, θ)⊗(E∗, θ∗) locally around D with at most log growth, and we prove
that this local metric and hH are mutually bounded by one another using similar ideas
in [52, §4]. Based on this model metric, we obtain a precise norm estimates for hH

near D, so that we can prove that τ ∗hH is a complete metric on X −D. This concludes
that the universal cover of X − D is the unit ball PU (n, 1)/U (n).

2 Log Higgs bundles and system of log Hodge bundles

2.1 Higgs bundles and tame harmonic bundles

In this section we recall the definition of Higgs bundles and tame harmonic bundles.
We refer the readers to [39,41,51–53] for further details.

Definition 2.1 Let X be a complex manifold. A Higgs bundle on X is a pair (E, θ)

where E is a holomorphic vector bundle with ∂̄E its complex structure, and θ : E →
E ⊗ �1

X is a holomorphic one form with value in End(E), say Higgs field, satisfying
θ ∧ θ = 0.

Let (E, θ) be a Higgs bundle over a complex manifold X . A smooth hermitian
metric h of E is called harmonic if Dh := dh + θ + θh is flat. Here dh is the Chern
connection of (E, h), and θh is the adjoint of θ with respect to h.

Definition 2.2 (Harmonic bundle) A harmonic bundle on a complex manifold X is
triple (E, θ, h) where (E, θ) is a Higgs bundle and h is a harmonic metric for (E, θ).

123



Y. Deng, B. Cadorel

A log pair consists of an n-dimensional complex manifold X , and a simple normal
crossing divisor D on X .

Definition 2.3 (Admissible coordinate) Let p be a point of X , and assume that
{Dj } j=1,...,� be components of D containing p. An admissible coordinate around
p is the tuple (U ; z1, . . . , zn;ϕ) (or simply (U ; z1, . . . , zn) if no confusion arises)
where

• U is an open subset of X containing p.
• there is a holomorphic isomorphism ϕ : U → n so that ϕ(Dj ) = (z j = 0) for
any j = 1, . . . , �.

We shall write U∗ := U − D, U (r) := {z ∈ U | |zi | < r , ∀i = 1, . . . , n} and
U∗(r) := U (r) ∩U∗.

Recall that the Poincaré metric ωP on (∗)� × n−� is described as

ωP =
�∑

j=1

√−1dz j ∧ dz̄ j
|z j |2(log |z j |2)2 +

n∑

k=�+1

√−1dzk ∧ dz̄k
(1 − |zk |2)2 .

Definition 2.4 (Poincaré growth) Let (X , D) be a log pair. A hermitian metric ω on
X − D has at most (resp. the same) Poincaré growth near D if for any point x ∈ D,
there is an admissible coordinate (U ; z1, . . . , zn) centered at x and a constant CU > 0
so that ω ≤ CUωP (resp. ω ∼ ωP ) holds over U∗(r) for some 0 < r < 1.

Remark 2.5 (Global Kähler metric with Poincaré growth) Let (X , ω) be a compact
Kähler manifold and D = ∑�

i=1 Di is a simple normal crossing divisor on X . By
Cornalba–Griffiths [12], one can construct a Kähler current T over X , whose restric-
tion on X − D is a complete Kähler form, which has the same Poincaré growth near
D as follows.

Let σi be the section H0(X ,OX (Di )) defining Di , and we pick any smooth metric
hi for the line bundle OX (Di ). One can prove that the closed (1, , 1)-current

T := ω − √−1∂∂ log(−
�∏

i=1

log |ε · σi |2·hi ), (2.1.1)

the desired Kähler current when 0 < ε � 1.

2.2 Log Higgs bundle and adapted harmonic metrics

Throughout this paper, we mainly consider log Higgs bundles (E, θ) over log pairs.

Definition 2.6 (Log Higgs bundles) Let (X , D) be a log pair. A log Higgs bundle
consists of a pair (E, θ) with E a holomorphic vector bundle on X and θ : E →
E ⊗ �1

X (log D) with θ ∧ θ = 0.
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Definition 2.7 (Adapted harmonic metric) Let (X , D) be a log pair, and let (E, θ) be
a log Higgs bundle on (X , D). Suppose that h is a harmonic metric for the Higgs
bundle (E, θ)|X−D . It is called adapted to the log Higgs bundle if for any admissible
coordinate (U ; z1, . . . , zn) and any (a1, . . . , a�) ∈ [0, 1)�, one has

E(U ) = {σ ∈ E(U − D) | |σ |h = O(

�∏

i=1

|zi |−ai−ε) for any ε > 0}

In the terminology of [40,41], the above definitions are equivalent that (E, θ) is
a parabolic Higgs bundle with trivial parabolic structures over (X , D) of weight
(0, . . . , 0), and the harmonic bundle h for (E, θ)|X−D is adapted to its parabolic
structures.

2.3 Slope stability

Let (X , ω) be a compact Kähler manifold of dimension n and let D be a simple normal
crossing divisor on X . Let (E, θ) be a log Higgs bundle on (X , D). Let α be a big
and nef cohomology (1, 1)-class on X . For any torsion free coherent sheaf F , its
degree with respect to α is defined by degα(F) := c1(F) · αn−1, and its slope with

respect to α is defined by μα(F) := degα(F)

rank F . Consider a log Higgs bundle (E, θ) on
(X , D). A Higgs sub-sheaf is a saturated coherent torsion free subsheaf E ′ ⊂ E so
that θ(E ′) ⊂ E ′ ⊗ �1

X (log D). We say (E, θ) is μα-stable if for Higgs sub-sheaf E ′
of E , with 0 < rank E ′ < rank E , the condition μα(E ′) < μα(E) is satisfied. (E, θ)

is μα-polystable if it is a direct sum of μα-stable log Higgs bundles with the same
slope.

When α = {ω} where ω is a Kähler form on X , we write μω instead of μα . When
α = c1(L) for some ample line bundle L on X , we use the notation μL instead of μα .

By Simpson [52], there is a C
∗-action on log Higgs bundles (E, θ) defined by

(E, tθ) for any t ∈ C
∗. It follows from the definition that, if (E, θ) is μα-stable, then

(E, tθ) is also μα-stable for any t ∈ C
∗.

The following celebrated Simpson correspondence for tame harmonic bundles
proved by Mochizuki [40] is a crucial ingredient in this paper.

Theorem 2.8 (Mochizuki) Let (X , D) be a projective log pair endowed with an ample
polarization L. A log Higgs bundle (E, θ) on (X , D) isμL-polystable with

∫
X c1(E) ·

c1(L)dim X−1 = ∫
X ch2(E) · c1(L)dim X−2 = 0 if and only if there is a harmonic

metric h for (E |X−D, θ |X−D) adapted to (E, θ). When (E, θ) is moreover stable,
such a harmonic metric h is unique up to some positive constant multiplication.

Let us mention that in [5] Biquard has proved a stronger theorem when the divisor D
in Theorem 2.8 is smooth.

The poly-stability is also preserved under tensor product and dual by Mochizuki
[42, Proposition 4.10].

Theorem 2.9 (Mochizuki) Let (X , D) be a projective log pair endowed with an ample
polarization L. Let (E, θ) be a μL-polystable log Higgs bundle on (X , D). Then the
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tensor product T a,b(E, θ) is still a μL-polystable log Higgs bundle for a, b ∈ Z≥0.
Here T a,b(E, θ) := (

Hom(E⊗a, E⊗b), θa,b
)
is the induced logHiggs bundle by taking

the tensor product.

Since [42, Proposition 4.10] worked with the much more general case than what we
need, we shall provide a quick proof for Theorem 2.9 for completeness sake. The idea
essentially follows [53, Corollary 3.8] in the compact setting.

Proof of Theorem 2.9 By the Mehta–Ramanathan type theorem proved by Mochizuki
[40, Proposition 3.29], T a,b(E, θ) is μL -polystable if and only if T a,b(E, θ)|Y is
μL -polystable, where Y denotes a complete intersection of sufficiently ample general
hypersurfaces in X . This enables us to reduce the desired statement to the case of
curves. Assume now that dim X = 1. By [52] or [5, Théorème 8.1], (E, θ)|X−D

admits a Hermitian–Yang–Mills metric h:

�ωFh(E) = λ ⊗ 1E ,

where ω is some Kähler form in c1(L), and λ is some topological constant. Moreover,
h is adapted to (E, θ), and is adapted to log order in the sense of Definition 5.1.
Hence (h∗)⊗a ⊗h⊗b is the Hermitian–Yang–Mills metric for T a,b(E, θ)|X−D , which
is also adapted to log order. It follows from Theorem 6.7 below that T a,b(E, θ) is also
μL -polystable. ��

2.4 Simpson–Mochizuki correspondence for systems of log Hodge bundles

A typical and important class of log Higgs bundle is the system of log Hodge bun-
dles. In this subsection, we shall apply Theorem 2.8 to prove the Simpson–Mochizuki
correspondence for systems of log Hodge bundles.

Definition 2.10 (System of log Hodge bundles) Let (E, θ) be a log Higgs bundle on
a log pair (X , D). We say that (E, θ) is a system of log Hodge bundles if there is a
decomposition of E into holomorphic vector bundles E := ⊕p+q=wE p,q such that

θ : E p,q → E p−1,q+1 ⊗ �1
X (log D).

When D = ∅, such (E, θ) is called a system of Hodge bundles. A system of logHodge
bundles is μα-(poly)stable if it is μα-(poly)stable in the sense of log Higgs bundles.

Definition 2.11 (Hodge metric) Let (E := ⊕p+q=wE p,q , θ) be a system of Hodge
bundles on a complexmanifold X . A hermitian metric h for E is called aHodge metric
if h is harmonic, and it is a direct sum of metrics on the bundles E p,q .

By Simpson [51], a system of Hodge bundles equipped with a Hodge metric is equiva-
lent to a complex variation ofHodge structures.He then establishedhis correspondence
for Hodge bundles over compact Kähler manifolds in [51, Proposition 8.1]. In the rest
of this subsection, we will extend his result to the log setting.

Let us state and prove the main result in this subsection.
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Proposition 2.12 Let (X , D) be a projective log pair. Let (E, θ) = (⊕p+q=wE p,q , θ)

be a system of log Hodge bundles on (X , D) which is μL-polystable with
∫
X c1(E) ·

c1(L)dim X−1 = ∫
X ch2(E) · c1(L)dim X−2 = 0. Then there is a decomposition

(E, θ) = ⊕i∈I (Ei , θi ) where each (Ei , θi ) is μL-stable system of log Hodge bun-
dles so that there is a Hodge metric hi (unique up to a positive multiplication) for
(Ei |X−D, θi |X−D) which is adapted to (Ei , θi ).

Proof Let us first prove the proposition when (E, θ) is stable. By [40, Theorem 9.1
and Propositions 5.1–5.3], there is a harmonic metrics h for (E |X−D, θ |X−D) which
is adapted to (E, θ), and such a harmonic metric is unique up to a positive constant
multiplication. We introduce automorphism ft : E → E of E parametrized by t ∈
U (1), defined by

ft

⎛

⎝
∑

p+q=w

ep,q

⎞

⎠ =
∑

p+q=w

t pep,q . (2.4.1)

for every ep,q ∈ E p,q . Then ft : (E, θ) → (E, tθ) is an isomorphism since tθ ◦ ft =
ft ◦θ . Hence by the uniqueness of harmonic metrics, there is a function λ(t) : U (1) →
R

+ such that

f ∗
t h = λ(t) · h.

For every ep,q ∈ E p,q , one has

λ(t) · h(ep,q , ep,q) = f ∗
t h(ep,q , ep,q) = h( ft (e

p,q), ft (e
p,q))

= |t p|2h(ep,q , ep,q) = h(ep,q , ep,q)

Hence λ(t) ≡ 1 for t ∈ U (1), namely f ∗
t h = h. On the other hand,

h(ep,q , er ,s) = f ∗
t h(ep,q , er ,s) = h( ft (e

p,q), ft (e
r ,s)) = t pt−r h(ep,q , er ,s)

for any t ∈ U (1). Therefore, h(ep,q , er ,s) = 0 if p �= r . Hence h is a direct sum of
hermitian metrics for E p,q , namely h is a Hodge metric. The proposition is proved if
(E, θ) is stable.

Let us prove thegeneral cases.By [40,Corollary 3.11&Theorem9.1&Propositions
5.1-5.3], there is a canonical and unique decomposition (E, θ) = ⊕i∈I (Ei , θi )⊗C

pi

where I is a finite set and harmonic metrics hi for (Ei |X−D, θi |X−D)which is adapted
to (Ei , θi ) so that (Ei , θi ) is a μL -stable log Higgs bundle. By the above arguments,
it suffices to prove that each (Ei , θi ) is system of log Hodge bundles. Since (E, θ) is
a system of log Hodge bundles, (E, tθ) is isomorphic to (E, θ) for any t ∈ U (1). We
have the following decomposition (E, tθ) = ⊕i (Ei , tθi ) ⊗ C

pi . Note that (Ei , tθi )
is still μL -stable. By the uniqueness of the decomposition, (Ei , tθi ) � (Eit , θit ) for
some it ∈ I . Since I is a finite set, there exists t1, t2 so that t1/t2 is not a root of unity
and it1 = it2 . In other words, (Ei , t1θi ) � (Ei , t2θi ). By [52, Lemma 4.1] or [53,
Theorem 8], (Ei , t1θi ) is a system of log Hodge bundles, and so is (Ei , θi ). Hence
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(E, θ) is a direct sum of μL -stable system of log Hodge bundles (Ei , θi ), and each
(Ei |X−D, θi |X−D) admits a Hodge metric hi adapted to (Ei , θi ). The proposition is
proved. ��

3 Principal system of log Hodge bundles

In this section, we will extend Simpson’s principal system of log Hodge bundles in
[51, §8] to the log setting. We will provide all necessary proofs for the claims for
completeness sake. Let us mention that most results in this section follows from [51,
§8 & §9] with minor changes.

Let G0 be a real algebraic group which is semi-simple with its Lie algebra denoted
by g0. Let G be the complexification of G0 with its Lie algebra denoted by g. Then
g = g0 + √−1g0. G0 is called a Hodge group if the following conditions hold.

• The Lie algebra g of G admits a Hodge structure of weight 0, namely, one has a
decomposition

g = ⊕gp,−p

so that [gp,−p, gq,−q ] ⊂ gp+q,−p−q .
• If • denotes the complex conjugation with respect to g0, then gp,−p = g−p,p.
• The form

hg(U , V ) := (−1)p+1Tr(adUadV̄ ) for U , V ∈ gp,−p (3.0.1)

is a positively definite hermitian metric for g.

let K0 ⊂ G0 be the Lie subgroup of G0 so that its Lie algebra k0 is g0 ∩ g0,0. Let
K ⊂ G (resp. k) be the complexification of K0 (resp. k0), and thus the Lie algebra of
K is k. Then the restriction of the Killing form of g0 on k0 is positively definite, and
thus K0 is a compact real Lie group.

In the rest of the paper, we shall use the above notations without recalling their
meanings.

The following concrete example of the Hodge group will be used in this paper,
especially in the proof of Theorem A.

Example 3.1 Consider the a direct sum of C-vector spaces

V = ⊕i+ j=wV
i, j

Denote by ri := rank V i, j , and r := rank V . Fix a hermitian metric h = ⊕i+ j=whi
for V where hi is a hermitian metric for V i, j . We take a sesquilinear form Q(u, v) :=
(
√−1)i− j h(u, v) for u, v ∈ V i, j . Define G0 := PU (V , Q) � PU (p0, q0), where
p0 := ∑

i odd ri and q0 := ∑
i even ri . We shall show that G0 is a Hodge group.

First we note that the complexification of G0 is G := PGL(V ) � PGL(r , C).
Then the Lie algebra of G is g = sl(V ) � sl(r , C), and the Lie algebra of G0 is
g0 = su(p0, q0). Let us define the Hodge decomposition as follows:
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gp,−p = ⊕iHom(V i, j , V i+p, j−p) ∩ sl(V ).

Then g = ⊕gp,−p. One can check that gp,−p = g−p,p, where the conjugate is taken
with respect to the real form g0 of g.

Let K be the subgroup ofG which fix each V i, j . Then K = P(
∏

i+ j=w GL(V i, j )),

and its Lie algebra is k = g0,0. Define K0 := K ∩ G0 = P(
∏

i+ j=w U (V i, j , hi )),

whose Lie algebra is k0 = g0,0 ∩ g0.
More precisely, if we fix a unitary frame e1, . . . , ep0 for (⊕ioddV i, j ,⊕i oddhi )

and a unitary frame f1, . . . , fq0 for (⊕i evenV i, j ,⊕ioddhi ), elements in g0 can be
expressed as the ones in M(r × r , C) with the form

[
A C
C∗ B

]

where A ∈ u(p0) and B ∈ u(q0) so that Tr(A) + Tr(B) = 0. Note that the Killing
form

Tr(aduadv) = 2rT r(uv),

if we consider u, v as elements in sl(r , C). Moreover, for u ∈ gp,−p, one can show
that

u =
{

−u∗ if p is even

u∗ if p is odd.

where u∗ denotes the conjugate transpose of u. Hence the hermitian metric hg defined
in (3.0.1) can be simply expressed as

hg(u, v) = 2rT r(uv∗)

once we consider u, v as elements in sl(r , C). In other words, for the natural inclusion
ι : g ↪→ gl(V ), one has hg = 2r · ι∗hEnd(V ), where hEnd(V ) is the hermitian metric on
End(V ) induced by hV . This fact is an important ingredient in the proof of Theorem
A.

Let us generalize Simpson’s definition of principal system of Hodge bundles in [51,
§8] to the log setting as follows.

Definition 3.2 (Principal system of log Hodge bundles) A principal system of log
Hodge bundles on a log pair (X , D) is a pair (P, τ ), where P is a holomorphic K -
fiber bundle endowed with a holomorphic map

τ : TX (− log D) → P ×K g−1,1

such that [τ(u), τ (v)] = 0. A metric for P|X−D is a reduction PH ⊂ P|X−D whose
structure group is K0. Let dH be the Chern connection for PH . Define τ H to be the
complex conjugate of τ |X−D with respect to the reduction PH . Then
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τ H ∈ C∞(X − D, (PH ×K0 g
1,−1) ⊗ �

0,1
X−D).

Set

DH := dH + τ |X−D + τ H , (3.0.2)

which is a connection on the smooth G0-bundle PH ×K0 G0. Such triple (P|X−D,

τ |X−D, PH ) is called a principal variation of Hodge structures over X − D of Hodge
group G0, if the induced connection DH in (3.0.2) is flat, namely the curvature of DH

is zero.

Remark 3.3 Note that themetric reduction PH for a principal system ofHodge bundles
(P, τ ) on a complexmanifold X induces a hermitianmetric hH on P×K g � PH×K0g
defined by

hH
(
(p, u), (p, v)

) := hg(u, v) (3.0.3)

for any p ∈ PH and u, v ∈ g. Here hg is the hermitian metric defined in (3.0.1). Note
that K0 preserves the decomposition g = ⊕p+q=wg

−p,p. It thus also preserves hg.
Indeed, for u, v ∈ g−p,p and k ∈ K0, one has

(−1)p+1hg(Adku, Adkv) = (−1)p+1hg(u, v).

By the equivalence relation (p, u) ∼ (pk−1, Adku), the metric hH is thus well-
defined.

Remark 3.4 (Period map of principal variation of Hodge structures) By Simpson [51,
p. 900], for a principal variation ofHodge structures (P, τ, PH ) on a complexmanifold
X , one can also define its period map as follows. Denote by π : X̃ → X the universal
cover of X . Set (P̃ := π∗P, τ̃ := π∗τ, P̃H := π∗PH ), which is a principal variation
of Hodge structures on the simply connected complexmanifold X̃ . The flat connection
DH thus induces a flat trivialization P̃H ×K0 G0 � X̃ ×G0. Denote by φ : P̃H → G0

the composition of the inclusion P̃H ⊂ P̃H ×K0 G0 � X̃ × G0 and the projection
X̃ × G0 → G0. It induces a map

f : X̃ → G0/K0 =: D
x̃ �→ φ(ex ) · K0 ∀ex ∈ P̃H ,x̃ . (3.0.4)

Alternatively, we view G0 → D as a principal K0-fiber bundle over D , and its pull-
back on X̃ via f is nothing but the principal K0-fiber bundle P̃H by our definition of
f . Hence the complexified differential of f is

d f C : TC

X̃
→ f ∗TC

D � f ∗(G0 ×K0 ⊕p �=0g
p,−p) = P̃H ×K0 ⊕p �=0g

p,−p

One can prove that d f C = τ̃ + τ̃ H , where τ̃ H is the conjugate of τ̃ with respect
to P̃H . Hence the restriction of d f C to the holomorphic tangent bundle TX̃ is τ̃ ,
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which is a holomorphic map since the holomorphic tangent bundle of D is TD �
G0 ×K0 ⊕p<0g

p,−p. In conclusion, f is a holomorphic map, which is called the
periodmap associated to the principal variation ofHodge structures (P, τ, PH ), whose
differential is given by d f = τ̃ .

The uniformization is related by Hodge group of Hermitian type.

Definition 3.5 [51, §9] A Hodge group G0 is called Hermitian type if the Hodge
decomposition g of the Lie algebra of G is

g = g−1,1 ⊕ g0,0 ⊕ g1,−1

and that G0 has no compact factor. In this case, K0 ⊂ G0 is the maximal compact
subgroup and D := G0/K0 is a Hermitian symmetric space of non-compact type.

Let us generalize the definition of uniformizing bundle by Simpson [51, §9] to the log
setting.

Definition 3.6 (Uniformizing bundle) Let G0 be a Hodge group of Hermitian type. A
uniformizing bundle on a log pair (X , D) is a principal system of log Hodge bundles

(P, τ ) such that τ : TX (− log D)
�→ P ×K g−1,1 is an isomorphism. A uniformizing

variation of Hodge structures is a uniformizing bundle on a complex manifold X
together with a flat metric PH ⊂ P .

Remark 3.7 (Uniformization via uniformizing bundles) It follows from Definition 3.6
that, for a uniformizing variation of Hodge structures (P, τ, PH ) over a complex
manifold X , the period map f : X̃ → D defined in (3.0.4) is locally biholomorphic.
This follows from the fact that d f = τ̃ , which is isomorphic at any point of X̃ by
the definition. Recall that in Remark 3.3 the metric reduction PH together with the
positively definite form hg for g in (3.0.1) induce a metric hH for P ×K g−1,1. For
the period domain D which is a hermitian symmetric space, one can also define the
hermitian metric hD for TD � G0 ×K0 g−1,1 in a similar way. By Remark 3.4,
P̃H = f ∗G0 when we consider G0 → D as a principal K0-fiber bundle over D . One
thus has

π∗τ ∗hH = f ∗hD . (3.0.5)

In other words, f : (X̃ , h X̃ := π∗τ ∗hH ) → (D, hD ) is a local isometry. Hence for
the action of π1(X) on X̃ , the metric h X̃ is invariant under this π1(X)-action. If τ ∗hH

is a complete metric, so is π∗τ ∗hH , and by [13, Theorem IV.1.2], f : X̃ → D is a
Riemannian covering map, which is thus a biholomorphism since X̃ and D are both
simply connected. In other words, X is uniformized by the hermitian symmetric space
D when the metric τ ∗hH on X is complete.

One can construct systems of log Hodge bundles from principal ones via Hodge
representations.

123



Y. Deng, B. Cadorel

Definition 3.8 [51, p. 900] Let (V = ⊕p+q=wV p,q , hV ) be a polarized Hodge struc-
ture. A Hodge representation of G0 is a complex representation ρ : G → GL(V )

satisfying the following conditions.

• The action of g is compatible with Hodge type, and such that K0 preserves Hodge
type. In other words,

dρ(gr ,−r )(V p,q) ⊂ V p+r ,q−r

and ρ(K0)(V p,q) ⊂ V p,q .1

• The sesquilinear form Q defined by

Q(u, v) := (
√−1)p−qhV (u, v) for u, v ∈ V p,q (3.0.6)

is G0 invariant. Namely, one has ρ(G0) ⊂ U (V , Q).

Example 3.9 For the Hodge group G0, (g = ⊕pg
p,−p, hg) is a polarized Hodge

structure of weight 0, where hg is the polarization defined in (3.0.1) via the Killing
form. One can easily check that the adjoint representation Ad : G → GL(g) is a
Hodge representation for this polarized Hodge structure.

A principal system of logHodge bundles together with aHodge representation induces
a system of log Hodge bundles as follows.

Lemma 3.10 If ρ : G → GL(V ) is a Hodge representation of the Hodge group G0
and (P, τ ) is a principal system of log Hodge bundles on the log pair (X , D), then
(E := P ×K V , θ := dρ(τ)) is a system of log Hodge bundles. A polarization hV
for V together with a metric PH for P|X−D give a metric hE on the system of Hodge
bundles (E, θ)|X−D over X −D. When (P|X−D, τ |X−D, PH ) is a principal variation
ofHodge structures over X−D, (E |X−D, θ |X−D, hE )gives rise to a complex variation
of Hodge structures.

Proof By Definition 3.8, one has ρ(K )(V p,q) ⊂ V p,q . Hence E := P ×K V admits
a decomposition of holomorphic vector bundles E = ⊕p+q=wE p,q with E p,q :=
P×K V p,q . Let us define θ := dρ(τ). Since τ : TX (− log D) → P×K g−1,1 satisfies
[τ(u), τ (v)] = 0, and dρ(g−1,1)(V p,q) ⊂ V p−1,q+1, one thus has θ : E p,q →
E p−1,q+1 ⊗ �1

X (log D), with θ ∧ θ = 0. Hence (E, θ) is a system of log Hodge
bundles.

Let us now prove that ρ|K0 : K0 → GL(V ) has image on U (V , hV ). Since
ρ(K )(V p,q) ⊂ V p,q , one thus has

ρ(K ) ⊂
∏

p+q=w

GL(V p,q).

Since the sesquilinear form Q in (3.0.6) is G0 invariant, one thus has

ρ(G0) = U (V , Q).

1 As remarked by Simpson [51], this is not automatic if K0 is not connected. However, in Example 3.1,
K0 is always connected, and thus such condition will be superfluous in that case.
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Hence

ρ(K0) ⊂ ρ(G0 ∩ K ) ⊂
∏

p+q=w

U (V p,q , h p,q) ⊂ U (V , hV ). (3.0.7)

Note that E = P ×K V � PH ×K0 V . We define the hermitian metric hE for E by
setting

hE ((p, u), (p, v)) := hV (u, v) (3.0.8)

for any p ∈ PH and for any u, v ∈ V . Since ρ(K0) ⊂ U (V , hV ), one can check as
Remark 3.3 that hE is well-defined.

If (P|X−D, τ |X−D, PH ) is a principal variation of Hodge structures on X − D, the
connection DH := dH + τ + τ H is flat. By construction, the connection DhE :=
dhE + θ + θhE for E |X−D is also flat, where dhE is the Chern connection for the
metrized vector bundle (E, hE ), and θhE is the conjugate of θ with respect to hE .
Indeed, it can be seen from that dhE is naturally induced by dH , θ := dρ(τ), and
θhE = dρ(τ H ) by (3.0.8). By [51, p. 898], the triple (E |X−D, θ |X−D, hE ) gives rise
to a complex variation of Hodge structures on X − D. ��

Conversely, one can associate a system of log Hodge bundles with a principal one
as follows. The following result shall be applied in the proof of Theorem A.

Proposition 3.11 Let (E, θ) = (⊕p+q=wE p,q , θ) be a system of log Hodge bundles
on a log pair (X , D). Then there is a principal system of log Hodge bundles (P, τ )

with the structure group K associated to (E, θ), where K is the semi-simple Lie
group in Example 3.1. Moreover, any hermitian metric (not necessarily harmonic)
h := ⊕p+q=wh p for E |X−D gives rise to a metric reduction PH for P|X−D with the
structure group K0 defined in Example 3.1.

Proof We shall adopt the same notions as those in Example 3.1. Denote by rp :=
rank E p,q , r := ∑

p+q=w rp and set �i := ∑
p≥i ri . We consider the following frame

bundle P̃ . The fiber of P̃ over a point x is the set of all ordered bases e1, . . . , er
(or say frames) for Ex such that e�p−rp+1, . . . , e�p is a basis for E

p,q
x . The structure

group of P̃ is thus
∏

p GL(rp, C), which is the subgroup of GL(r , C). P̃ can be
equipped with the holomorphic structure induced by E . Consider the homomorphism
f : GL(r , C) → PGL(r , C) =: G, and set K = P

( ∏
p GL(rp, C)

)
to be the image

of
∏

p GL(rp, C) under f . Set P to be the holomorphic K -fiber bundle obtained by
extending the structure group of

∏
p GL(rp, C) using f .

Note that P ×K g−1,1 = ⊕i+ j=wHom(Ei, j , Ei−1, j+1). Let us define τ := θ . The
pair (P, τ ) is a principal system of log Hodge bundles on the log pair (X , D).

Recall that the metric h for the Hodge bundle (E, θ)|X−D is a direct sum
h = ⊕p+q=wh p. We take a sesquilinear form Q of E defined by Q(u, v) :=
(
√−1)p−qh(u, v) for u, v ∈ E p,q . We take P̃H to be a reduction of P̃|X−D con-
sisting of unitary frames with respect to Q. In other words, The fiber of P̃ over a point
x is the set of frames e1, . . . , er for Ex such that e�p−rp+1, . . . , e�p is an orthonor-

mal basis for (E p,q
x , h p). Hence the structure group of P̃H is K̃0 := ∏

p+q=w U (rp).
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Define K0 := P
( ∏

p+q=w U (rp)
)
, which is the image f (K̃0). Set PH to be the

smooth principal K0-fiber bundle on X −D obtained by extending the structure group
of P̃H using f : K → K0. Then PH ⊂ PX−D is also a metric reduction. The Hodge
group G0 will be PU (p0, q0) where p0 := ∑

p even rp and q0 := ∑
p odd rp, and

G := PGL(r , C) is the complexification of G0. The proposition is proved. ��

4 Tannakian consideration

In this section, we shall construct principal variation of Hodge structures over quasi-
projective manifolds. Its proof is based on Proposition 2.12 together with some
Tannakian considerations in [38,40,52].

Theorem 4.1 Let (X , D) be a projective log pair endowed with an ample polariza-
tion L. Let (P, τ ) be a principal system of log Hodge bundles on (X , D), and let
ρ be a Hodge representation ρ : G → GL(V ) for some polarized Hodge structure
(V = ⊕i+ j=wV i, j , hV ) so thatρ|K0 : K0 → GL(V ) is faithful and dρ : g0 → gl(V )

is injective. If the system of log Hodge bundles (E := P×K V , θ := dρ(τ)) defined in
Lemma 3.10 is μL-polystable with

∫
X ch2(E) · c1(L)dim X−2 = 0, then there exists a

metric reduction PH for P|X−D so that the triple (P|X−D, τ |X−D, PH ) is a principal
variation of Hodge structures on X − D. Moreover, such PH together with the polar-
ization hV for V gives rise to a Hodge metric h for (E, θ)|X−D (defined in Lemma
3.10) which is adapted to (E, θ).

Proof Wefirst prove that (E, θ)|X−D admits a Hodgemetric h over (E, θ)|X−D which
is adapted to (E, θ). Since K is a complex semi-simple Lie group, the Hodge repre-
sentation ρ′ : K → GL(det V ) induced by ρ has image contained in SL(det V ) = 1.
Hence ρ′ is trivial. Note that det E = P ×K det V , which is thus a trivial line bun-
dle on X . Hence c1(E) = 0. Since we assume that (E, θ) is μL -polystable with∫
X ch2(E) · c1(L)dim X−2 = 0, it follows from Proposition 2.12 that (E, θ)|X−D

admits a Hodge metric h over (E, θ)|X−D which is adapted to (E, θ).
Let us show that ρ|K : K → GL(V ) is faithful. By (3.0.7), one has ρ(K0) ⊂

U (V , hV ). Since K is the complexification of K0 and ρ|K0 : K0 → GL(V ) is
assumed to be faithful, one concludes that ρ|K : K → GL(V ) is also faithful.

Let us now recall some Tannakian arguments. The representation ρ induces a
representation ρa,b : G → GL(T a,bV ) for any a, b ∈ N, where T a,bV :=
Hom(V⊗a, V⊗b). Since ρ|K : K → GL(V ) is faithful, we can consider K as a
reductive algebraic subgroup of GL(V ). There is a one dimensional complex sub-
space V1 ∈ T a,bV for some (a, b) ∈ N

2 so that

K = {g ∈ GL(V ) | ρa,b(g)(V1) = V1}. (4.0.1)

Since K is reductive, there is a complementary subspace V2 of T a,bV for V1 which is
invariant under K .

By Lemma 3.10, the Hodge representation ρa,b and (P, τ ) gives rise to a system of
logHodge bundles (P×K T a,bV , θa,b := dρa,b(τ )) over (X , D), which is nothing but
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T a,b(E, θ). Recall that ρa,b(K )(V1) = V1 and ρa,b(K )(V2) = V2. Consider the log
Higgs bundles (E1, θ1) := (P×K V1, dρa,b(τ )) and (E2, θ2) := (P×K V2, dρa,b(τ ))

over (X , D).
Note that T a,b(E, θ) = (E1, θ1) ⊕ (E2, θ2). By Theorem 2.8, T a,b(E, θ) is

μL -polystable with
∫
X c1(T a,b(E)) · c1(L)dim X−1 = 0 with respect to an arbi-

trary polarization L . Since c1(T a,b(E)) = c1(E1) + c1(E2), by the polystability of
T a,b(E, θ), we conclude that (E1, θ1) and (E2, θ2) are bothμL -polystable. By Propo-
sition 2.12, each (Ei |X−D, θi |X−D) admits a harmonic metric hi which is adapted to
(Ei , θi ). Moreover, h coincides with h1 ⊕ h2 up to some obvious ambiguity.

In the rest of the proof, any object which appears is restricted over X − D. Let us
first enlarge the structure group of P by defining PGL(V ) := P ×K GL(V ) via the
faithful representation ρ|K : K → GL(V ). This is the holomorphic principal (frame)
bundle associated to E . We can consider P = P ×K K ⊂ PGL(V ) as a reduction
of PGL(V ). The metric h for E gives rise to a reduction PU (E,h) of PGL(V ) with the
structure group U (V , hV ). Indeed, note that

E = PGL(V ) ×GL(V ) V

and thus themetric h for E induces a family of hermitianmetrics he for V parametrized
by e ∈ PGL(V ). It has the obvious relation he·g = g∗he for any g ∈ GL(V ). We define

PU (E,h) := {e ∈ PGL(V ) | he = hV } (4.0.2)

and it is obvious that if e ∈ PU (E,h), then e · g ∈ PU (E,h) if and only if g ∈ U (V , hV ).
Hence the structure group of PU (E,h) is U (V , hV ).

Let us define PH := P ∩ PU (E,h) whose structure group is U (V , hV ) ∩ K ⊃ K0
by (3.0.7). Since K0 is the maximal compact subgroup of K and U (V , hV ) ∩ K is
also compact, one has moreover U (V , hV ) ∩ K = K0. Hence PH ⊂ P is a metric
reduction with the structure group K0.

Obviously, if we follow Lemma 3.10 to define a new metric h′ for E by setting

h′((p, u), (p, v)) := hV (u, v)

for any p ∈ PH and for any u, v ∈ V , then

h′ = h (4.0.3)

by (4.0.2). We shall prove that (P|X−D, τ |X−D, PH ) is a principal variation of Hodge
structures on X − D following the elegant arguments in [38, Proposition 3.7].

Let A ∈ C∞(PGL(V ), T ∗
PGL(V )

⊗ gl(V )) be the Chern connection 1-form for the
principal bundle PGL(V ) induced by the Chern connection dh for (E, h). Fix a base
point p ∈ P ⊂ PGL(V ), and we denote by π : P → X the projection map. Recall
that

T a,b(E, h) = (E1, h1) ⊕ (E2, h2),
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and

Ei = P ×K Vi .

Hence the holonomy Hol(p, γ ) ∈ GL(V ) with respect to the connection A along
any smooth loop γ based at π(p) satisfies that

ρa,b
(
Hol(p, γ )

)
(Vi ) ⊂ Vi

for i = 1, 2. By (4.0.1), one has Hol(p, γ ) ∈ K . Hence the restriction of A to P is
1-form with values in k. In other words, A is induced by a connection on P .

On the other hand, by the definition of the Chern connection, A is also induced by
a connection on PU (E,h); in other words, the restriction of A to PU (E,h) is 1-form with
values in Lie(U (V , hV )), where Lie(U (V , hV )) denotes the Lie algebra ofU (V , hV ).
Since k0 = k∩Lie(U (V , hV )), there is a connection A0 ∈ C∞(PH , T ∗

PH
⊗ k0) for the

smooth principal K0-fiber bundle PH := PU (E,h) ∩ P which induces the connection
A. A0 is moreover the Chern connection with respect to the reduction PH of P by
our construction. Let us define FH ∈ A 1,1(PH ×K0 g0) to be the curvature form
of the connection A0 + τ + τ H over the smooth principal K0-bundle PH ×K0 G0, ,
where τ H is the adjoint of τ with respect to the metric reduction PH ⊂ P . Recall that
θ := dρ(τ). By (4.0.3), one has θh = dρ(τ H ). Hence

dρ(FH ) = (dh + θ + θh)
2 = Fh(E) = 0 (4.0.4)

where dh is the Chern connection for (E, h). Since dρ : g0 → gl(V ) is assumed to be
injective, by (4.0.4) this implies that FH = 0. In conclusion, (P|X−D, τ |X−D, PH ) is
a principal variation of Hodge structures on X − D. ��

5 Uniformization of quasi-projectivemanifolds by unit balls

This section is devoted to the proof of Theorem A. In Sect. 5.2 we shall prove a basic
result for the extension of plurisubharmonic functions. This lemma will be used in the
proof of Theorem A. We shall also give an application of this fact in Hodge theory:
we can give a much simpler proof of the negativity of kernel of Higgs fields for tame
harmonic bundles originally proven by Brunebarbe [9] (see also [60] for systems of
log Hodge bundles). With all the tools developed above, we are able to prove Theorem
A in Sect. 5.3.

5.1 Adaptedness to log order and acceptable metrics

We recall some notions in [41, §2.2.2]. Let X be a C∞-manifold, and E be a C∞-
vector bundle with a hermitian metric h. Let v = (v1, . . . , vr ) be a C∞-frame of
E. We obtain the H(r)-valued function H(h, v),whose (i, j)-component is given by
h(vi , v j ).
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Let us consider the case X = n , and D = ∑�
i=1 Di with Di = (zi = 0). We have

the coordinate (z1, . . . , zn). Let h, E and v be as above.
A frame v is called adapted up to log order, if the following inequalities hold over

X − D

C−1

(

−
�∑

i=1

log |zi |
)−M

≤ H(h, v) ≤ C

(

−
�∑

i=1

log |zi |
)M

for some positive numbers M and C .

Definition 5.1 Let (X , D) be a log pair, and let E be a holomorphic vector bundle on
X . A hermitian metric h for E |X−D is adapted to log order if for any point x ∈ D,
there is an admissible coordinate (U ; z1, . . . , zn), a holomorphic frame v for E |U
which is adapted up to log order.

Definition 5.2 (Acceptable metric) Let (X , D) be a log pair and let (E,θ) be a log
Higgs bundle over (X , D). We say that the metric h for E |X−D is acceptable, if for
any p ∈ D there is an admissible coordinate (U ; z1, . . . , zn) around p, so that the
norm |Fh |h,ωP ≤ C for some C > 0 over U − D. Such triple (E, θ, h) is called an
acceptable bundle on (X , D).

One can easily check that acceptable metrics and adaptedness to log order defined
above are invariant under bimeromorphic transformations.

Lemma 5.3 Let (X , D) be a log pair, and let μ : X̃ → X be a bimeromorphic
morphism so that μ−1(D) = D̃. For a log Higgs bundle (E, θ) over (X , D), one can
define a log Higgs bundle (Ẽ, θ̃ ) on (X̃ , D̃) by setting Ẽ = μ∗E and θ̃ to be the
composition

μ∗E μ∗θ−−→ μ∗(E ⊗ �1
X (log D)) → μ∗E ⊗ �1

X̃
(log D̃).

If the metric h for (E, θ)|X−D is acceptable or adapt to log order, so is the metricμ∗h
for (Ẽ, θ̃ )|X̃−D̃ . ��

5.2 Extension of psh functions and negativity of kernel of Higgs fields

In this subsection we shall prove a result on the extension of plurisubharmonic (psh
for short) functions, which will be used in the proof of Theorem A and Proposition
6.6. As a byproduct, we give a very simple proof of the negativity of kernels of Higgs
fields of tame harmonic bundles by Brunebarbe [9, Theorem 1.3], which generalizes
the earlier work by Zuo [60] for system of log Hodge bundles.

Lemma 5.4 Let X = n, and D = ∑�
i=1 Di with Di = (zi = 0). Let ϕ be a psh

function on X∗. We assume that for any δ > 0, there is a positive constant Cδ so that

ϕ(z) ≤ δ

�∑

j=1

(− log |z j |2)) + Cδ
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on X∗. Then ϕ extends uniquely to a psh function on X.

Proof Define ϕε := ϕ + ε
∑�

j=1(log |z j |2) for any ε > 0. Then for each ε > 0,
ϕε is locally bounded from above, which thus extends to a psh ϕ̃ε on the whole X
by the well-known fact in pluripotential theory. By the maximum principle, for any
0 < r < 1, there is a point ξε ∈ S(0, r) × · · · S(0, r) so that

sup
z∈(0,r)×···×(0,r)

ϕε(z) ≤ ϕε(ξε) ≤ ϕ(ξε)

where S(0, r) := {z ∈  | |z| = r}. Note that the compact set S(0, r) × · · · S(0, r) is
contained in X − D. Since ϕ is psh on X − D, there exists z0 ∈ S(0, r) × · · · S(0, r)
so that

sup
z∈S(0,r)×···S(0,r)

ϕ(z) ≤ ϕ(z0) < +∞.

Hence ϕε is uniformly locally bounded from above.
We define the upper envelope ϕ̃ := supε>0 ϕ̃ε, and define the upper semicontinuous

regularization of ϕ̃ by ϕ̃�(x) := limδ→0+ supB(x,δ) ϕ̃(z), where B(x, δ) is the unit ball
of radius δ centered at x . Then by the well-known result in pluripotential theory [19,
Chapter 1, Theorem 5.7], ϕ̃� is a psh function on X . By our construction, ϕ̃�(z) = ϕ(z)
on X − D. This proves our result. ��
A direct consequence of the above lemma is the following extension theorem of pos-
itive currents.

Lemma 5.5 Let (X , D) be a log pair and let L be a line bundle on X. Assume that h is
a smooth hermitian metric for L|X−D, which is adapted to log order. Assume further
that the curvature form

√−1Rh(L|X−D) ≥ 0. Then h extends to a singular hermitian
metric h̃ for L with zero Lelong numbers so that the curvature current

√−1Rh̃(L) is
closed and positive. In particular, L is a nef line bundle. ��

Let us show how to apply Lemma 5.4 to reprove the negativity of kernels of Higgs
fields of tame harmonic bundles.

Theorem 5.6 (Brunebarbe) Let X be a compact Kähler manifold and let D be a simple
normal crossing divisor on X. Let (E, θ, h) be a tame harmonic bundle on X−D, and
let (�E, θ) be the prolongation defined in [39, §4.1]. LetF be any coherent torsion free
subsheaf of �E which lies in the kernel of the Higgs field θ : �E → �E ⊗ �1

X (log D),
namely θ(F) = 0. Then

(i) the singular hermitian metric h|F for F , is semi-negatively curved in the sense
of [49, Definition 2.4.1].

(ii) The dualF∗ ofF isweakly positive over X◦ −D in the sense of Viehweg, where
X◦ ⊂ X is the Zariski open set so that F |X◦ → �E |X◦ is a subbundle.

(iii) If the harmonicmetric h is adapted to log order andF is a subbundle of �E so that
θ(F) = 0, then the line bundle OP(F∗)(1) admits a singular hermitian metric g
with zero Lelong numbers so that the curvature current

√−1Rg(OP(F∗)(1)) ≥
0; in particular, F∗ is a nef vector bundle.
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Proof By [49, Definition 2.4.1], it suffices to prove that for any open set U and any
s ∈ F(U ), log |s|2h extends to a psh function on U . Pick any point x ∈ D. By the
definition of �E , for any δ > 0, there are an admissible coordinate (U ; z1, . . . , zn)
centered at x , and a positive constant Cδ so that

log |s|2h ≤ δ

�∑

j=1

(− log |z j |2)) + Cδ

on U − D. Recall that Rh(E) + [θ, θh] = Fh(E) = 0. Since θ(s) = 0, we have

√−1∂∂ log |s|2h ≥ −
√−1{θs, θs}

|s|2h
−

√−1{θhs, θhs}
|s|2h

= −
√−1{θhs, θhs}

|s|2h
≥ 0.

over X − D. Hence log |s|2h is a psh function on X − D. By Lemma 5.4, we conclude
that log |s|2h extends to a psh function on U . This proves that (F , h) is negatively
curved in the sense of Păun-Takayama.

The metric h induces a negatively curved singular hermitian metric h1 (in the sense
of [49, Definition 2.2.1]) on the subbundleF |X◦ . By Lemma 5.5, h1 induces a singular
metric g for the line bundle OP(F∗|X◦ )(1) so that

√−1Rg(OP(F∗|X◦ )(1)) ≥ 0. Note
that X − X◦ is a codimension at least two subvariety. The second statement then
follows from Hörmander’s L2-techniques in [49, Proof of Theorem 2.5.2].

Let us prove the last statement. Since F is a subbundle of �E , one has X◦ = X .
Since h is assumed to be adapted to log order, the singular hermitian metric g for
OP(F∗)(1) thus has zero Lelong numbers everywhere. This implies the nefness of the
vector bundle F∗. ��

5.3 Characterization of non-compact ball quotient

Let us state and prove our first main theorem in this paper.

Theorem 5.7 Let X be an n-dimensional complex projective manifold and let D be a
simple normal crossing divisor on X. Let L be an ample polarization on X. For the log
Hodge bundle (�1

X (log D) ⊕ OX , θ) on (X , D) with θ defined in (1.1.1), we assume
that it is μL-polystable. Then one has the following inequality

(
2c2(�

1
X (log D)) − n

n + 1
c1(�

1
X (log D))2

) · c1(L)n−2 ≥ 0. (5.3.1)

When the above equality holds,

(i) if D is smooth, then X − D � B
n
/� for some torsion free lattice � ⊂ PU (n, 1)

acting on B
n. Moreover, X is the (unique) toroidal compactification of B

n
/�, and

each connected component of D is the smooth quotient of an Abelian variety A
by a finite group acting freely on A.
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(ii) If D is not smooth, then the universal cover X̃ − D of X−D is not biholomorphic

to B
n, though there exists a holomorphic map X̃ − D → B

n which is locally
biholomorphic.

In both cases, KX + D is big, nef and ample over X − D.

Proof Denote the log Hodge bundle (E, θ) = (E1,0 ⊕ E0,1, θ) by

E1,0 := �1
X (log D), E0,1 := OX .

By [40, Theorem 6.5] we have the following Bogomolov-Gieseker inequality for
(E, θ)

(
2c2(�

1
X (log X)) − n

n + 1
c1(�

1
X (log D))2

) · c1(L)n−2

= (
2c2(E) − rank E − 1

rank E
c1(E)2

) · c1(L)n−2 ≥ 0 (5.3.2)

This shows the desired inequality (5.3.1).
The rest of the proof will be divided into three steps. In Step 1, we shall construct a

uniformizing variation of Hodge structures on X −D so that the corresponding period
map defined in (3.0.4) induces a holomorphic map (so-called period map in Remark
3.7) from the universal cover of X − D to B

n which is locally biholomorphic. By
(3.0.5), this period map is moreover an isometry if we equip X − D with hermitian
metric induced by theHodgemetric. In Step twowewill prove that, when D is smooth,
the hermitian metric on X − D induced by the Hodge metric is complete. Together
with arguments in Remark 3.7, this proves that the above period map is indeed a
biholomorphism. In Step three we shall prove Theorem 5.7.(ii) and the positivity of
KX + D.
Step 1. We apply Proposition 3.11 to the above system of log Hodge bundles (E1,0 ⊕
E0,1, θ). Then there is a principal system of log Hodge bundles (P, τ ) on (X , D)with
the structure group K = P(GL(V 1,0)×GL(V 0,1))with rank V 1,0 = rank E1,0 = n,
and rank V 0,1 = rank E0,1 = 1. Here we use the notations in Example 3.1. Then by
Proposition 3.11 the Hodge group relative to (P, τ ) is G0 = PU (n, 1), and K0 =
K ∩ G0 = P(U (n) × U (1)) = U (n). For the complexified group G = PGL(V ) of
G0, its adjoint representation Ad : G → GL(g) = GL(sl(V )) is faithful. ByExample
3.9, this is a Hodge representation. By Example 3.10, such Hodge representation Ad
induces a system of log Hodge bundles (P ×Ad g, d(Ad)(τ )) over (X , D). It follows
our construction of (P, τ ) that

(P ×Ad g, d(Ad)(τ )) = (End(E)⊥, θEnd(E)⊥),

where End(E)⊥ is the trace-free subbundle of End(E), and θEnd(E)⊥ is the induced
Higgs field from (E, θ).

On the other hand, an easy computation shows that c1(End(E)) = 0, and

ch2(End(E)) = −2rank E · c2(E) + (rank E − 1)c1(E)2
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= nc21(KX + D) − 2(n + 1)c2(�
1
X (log D)) = 0

since the equality in (5.3.2) holds by our assumption. Since we assume that (E, θ)

is μL -polystable, by Theorem 2.9, (End(E), θEnd(E)) is also μL -polystable. We
now apply Proposition 2.12 to find a Hodge metric h for the system of log Hodge
bundle (End(E)|X−D, θEnd(E)|X−D) which is adapted to (End(E), θEnd(E)). Since
(End(E), θEnd(E)) = (End(E)⊥, θEnd(E)⊥)⊕(OX , 0), we conclude that h = h1⊕h2,
where h1 is the harmonic metric for (End(E)⊥|X−D, θEnd⊥(E)|X−D)which is adapted
to the log Higgs bundle (End⊥(E), θEnd⊥(E)), and h2 is the canonical metric for the
trivial Higgs bundle (OX , 0).

We now apply Theorem 4.1 to conclude that h1 induces a reduction PH for P|X−D

with the structure group K0 = P(U (n)×U (1)) � U (n), which is compatible with h1
such that (P|X−D, τ |X−D, PH ) is a principal variation of Hodge structures on X −D.
Note that

TX (− log D)
τ−→ P ×K g−1,1 = Hom(E1,0, E0,1) � Hom(�1

X (log D),OX )

is an isomorphism. Hence (P|X−D, τ |X−D, PH ) is moreover a uniformizing variation
of Hodge structures over X −D in the sense of Definition 3.6. By Remark 3.7, it gives
rise to a holomorphic map, the so-called period map,

X̃ − D → G0/K0 = PU (n, 1)/U (n) � B
n (5.3.3)

defined in (3.0.4), which is locally biholomorphic. Here X̃ − D is the universal cover
of X − D.

Note that the reduction PH together with the hermitian metric hg in (3.0.1) gives
rise to a natural metric hH over P ×K g|X−D defined in (3.0.3). By Remark 3.7 again,
if the pull back τ ∗hH is a complete metric on X − D, then X − D is uniformized by
G0/K0 = PU (n, 1)/U (n) which is the complex unit ball of dimension n, denoted by
B
n . It follows from (4.0.3) that h1 = hH . It now suffices to show that τ ∗h is complete

if we want to prove that X − D is uniformized by B
n , where we recall

τ : TX (− log D)
�→ Hom(E1,0, E0,1) ⊂ End(E).

In next step, we will apply similar ideas by Simpson [52, Corollary 4.2] to prove this.
Note that until now we made no assumption on the smoothness of D.
Step 2. Throughout Step 2, we will assume that D is smooth. Consider now the system
of log Hodge bundles (E, η) := (End(E), θEnd(E)). We first mention that the above
Hodge metric h for (E, η)|X−D is adapted to log order in the sense of Definition 5.1.
Indeed, it follows from [39, Corollary 4.9] that the eigenvalues of monodromies of the
flat connection D := dh + η + ηh around the divisor D are 1. By the “weak” norm
estimate in [39, Lemma 4.15], we conclude that h is adapted to log order2.

2 Indeed, a strong norm estimate has already been obtained by Cattani–Kaplan–Schmid in [14]. Here we
only need to know that h is adapted to log order, which is a bit easier to obtain using Andreotti–Vesentini
type results by Simpson [52] and Mochizuki [39, Lemma 4.15].
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We first give an estimate for τ ∗h. For any point x ∈ D, consider an admissible
coordinates (U ; z1, . . . , zn) centered at x as Definition 2.3 so that D∩U = (z1 = 0).
To distinguish the sections of log Higgs bundles and log forms, wewrite e1 := d log z1
and ei = dzi for i = 2, . . . , n. Denote by e0 = 1 the constant section of OX .

Let us introduce a new metric h̃ on (E, θ)|U∗ as follows.

|e1|2h̃ := (− log |z1|2); 〈ei , e j 〉h̃ := 0 for i �= j;
|ei |2h̃ := 1 for i = 2, . . . , n; |e0|2h̃ := (− log |z1|2)−1.

Write hii := |ei |2h̃ , and Fh̃(E) := Fh̃(E)k j ⊗ e∗
j ⊗ ek . Then for i, j = 2, . . . , n, one

has

Fh̃(E)11 = Fh̃(E)10 = Fh̃(E)01 = Fh̃(E)0i = Fh̃(E) j0 = 0

Fh̃(E)i j = (− log |z1|2)−1dz̄i ∧ dz j

Fh̃(E)1i = 1

(− log |z1|2)2 z̄1 dz̄1 ∧ dzi

Fh̃(E)i1 = 1

(− log |z1|2)z1 dz̄i ∧ dz1

Fh̃(E)00 =
n∑

i=2

(− log |z1|2)−1dzi ∧ dz̄i .

In conclusion, there is a constant C1 > 0 so that one has

|Fh̃(E)|2h,ωe
=

∑

0≤ j,k≤n

|Fh̃(E)k j ⊗ e∗
j ⊗ ek |2h,ωe

≤ C1

(− log |z1|2)3|z1|2 (5.3.4)

over U∗( 12 ) (notation defined in Definition 2.3), where ωe = √−1
∑n

i=1 dzi ∧ dz̄i is
the Euclidean metric on U∗.

Weabusively denote by h̃ the inducedmetric on (E, η)|U∗ := (End(E), θEnd(E))|U∗ ,
which is adapted to log order on (U , D ∩ U ) in the sense of Definition 5.1 by our
construction. Then

Fh̃(E) = Fh̃(E) ⊗ 1E∗ + 1E ⊗ Fh̃∗(E∗)
= Fh̃(E) ⊗ 1E∗ − 1E ⊗ Fh̃(E)†

where Fh̃(E)† is the transpose of Fh̃(E). Hence

Fh̃(E)(ei ⊗ e∗
j ) =

∑

k,�

(δ j�Fh̃(E)ik − δik Fh̃(E)� j )(ek ⊗ e∗
� )
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for 0 ≤ i, j, k, � ≤ n. It then follows from (5.3.4) that

|Fh̃(E)|2h,ωe
≤ C2

(− log |z1|2)3|z1|2 (5.3.5)

over U∗( 12 ) for some constant C2 > 0. Consider the identity map s for E , which
can be seen as a holomorphic section of End(E, E). We denote by (F ,�) :=
(End(E, E), ηEnd(E)) the induced Higgs bundle by (E, η). One can check that

�(s) = 0. (5.3.6)

We equip F |U∗ with the metric hF := h̃ ⊗ h∗, where h is the harmonic metric for
(E, η)|X−D constructed in Step one. Note that

FhF (F) = Fh̃(E) ⊗ 1E∗ + 1E ⊗ Fh∗(E∗)
= Fh̃(E) ⊗ 1E∗

By (5.3.5), there is a constant C0 > 0 so that one has

|FhF (F)|hF ,ωe ≤ C0

(− log |z1|2) 3
2 |z1|

(5.3.7)

over U∗( 12 ). Then

√−1∂∂ log |s|2hF ≥ −
√−1{RhF s, s}

|s|2hF
= −

√−1{�s,�s}
|s|2hF

−
√−1{�hF s,�hF s}

|s|2hF
−

√−1{FhF (F)s, s}
|s|2hF

≥ −
√−1{FhF (F)s, s}

|s|2hF
.

Here the third inequality follows from (5.3.6). For any ξ = (ξ2, . . . , ξn) with 0 ≤
ξ2, . . . , ξn ≤ 1

2 , we define a smooth function fξ over ∗ parametrized by ξ by

fξ (z1) := log |s|2hF (z1, ξ2, . . . , ξn).

Then the above inequality together with (5.3.7) implies that

 fξ ≥ −|FhF (F)|hF ,ωe ≥ − C0

(− log |z1|2) 3
2 |z1|

=: ϕ
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where C0 is some uniform constant which does not depend on ξ . Note that

‖ϕ‖L2 :=
∫

0<|z1|< 1
2

|ϕ(z1)|2dz1dz̄1 < C4 (5.3.8)

for some constant C4 > 0. For any fixed 0 ≤ ξ2, . . . , ξn ≤ 1
2 , consider the Dirichlet

problem

{
φ = fξ on {z1 | |z1| = 1

2 }
φ = ϕ on {z1 | 0 < |z1| < 1

2 }
(5.3.9)

By (5.3.8) and the elliptic estimate, one has

sup
0<|z1|< 1

2

|φ(z1)| ≤ C5(‖ϕ‖L2 + sup
|z1|= 1

2

fξ ). (5.3.10)

over {z1 | 0 < |z1| < 1
2 } for some uniform positive constant C5 which does not

depending on ξ . Hence ( fξ − φ) ≥ 0 over {z1 | 0 < |z1| < 1
2 }. Since both h and h̃

are adapted to log order, so is hF . Hence there is a constant C6 > 0 so that

log |s|2hF ≤ C6 log

(

−
�∑

i=1

log |zi |
)

overU∗( 12 ). ByLemma5.4,we conclude that fξ −φ extends to a subharmonic function
on {z1 | |z1| < 1

2 }. Note that fξ (z1)−φ(z1) = 0 when |z1| = 1
2 . Hence by maximum

principle,

fξ (z1) ≤ φ(z1)

for any 0 < |z1| < 1
2 . Let

C7 := sup
|z1|= 1

2 ,0≤ξ2,...,ξn≤ 1
2

fξ (z1)

which is finite. By (5.3.8) and (5.3.10), we have

sup
0<|z1|< 1

2 ,0≤z2,...,zn≤ 1
2

log |s|2hF (z1, . . . , zn) ≤ C5(C4 + C7).

This implies that h ≥ C8 · h̃ over U∗( 12 ) for some constant C8 > 0. By (5.3.5), one
has

|Fh̃∗(E∗)|2h∗,ωe
≤ C0

(− log |z1|2)3|z1|2 .
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Hence if we use the metric h ⊗ h̃∗ for F and do the same proof, we can prove that
h ≤ C9 · h̃ over U∗( 12 ) for some constant C9 > 0. Therefore, h̃ and h are mutually
bounded on U∗( 12 ). By

τ

(
z1

∂

∂z1

)
= e∗

1 ⊗ e0 (5.3.11)

τ

(
∂

∂z j

)
= e∗

j ⊗ e0 for j = 2, . . . , n, (5.3.12)

we obtain the norm estimate for the metric

τ ∗h ∼ τ ∗h̃ =
√−1dz1 ∧ dz̄1
|z1|2(log |z1|2)2 +

n∑

k=2

√−1dzk ∧ dz̄k
− log |z1|2 (5.3.13)

Though τ ∗h is strictly less than the Poincaré metric near D, one can easily prove that
it is still a complete metric. Therefore, the hermitian metric τ ∗hH = τ ∗h on X − D is
also complete. Based on Remark 3.7, we conclude that X − D is uniformized by the
complex unit ball of dimension n, namely, there is a torsion free lattice � ⊂ PU (n, 1)
so that X−D � B

n
/�. By (5.3.11) and (5.3.12), the canonical Kähler–Einstein metric

ω := τ ∗h for TX (− log D)|U is adapted to log order. It follows from Theorem A.7
that X is the unique toroidal compactification for the non-compact ball quotientBn

/�.
We accomplish the proof of Theorem 5.7.(i).

Step 3. Assume now D is not smooth. By (5.3.3), the period map X̃ − D → B
n

is locally biholomorphic. Assume by contradiction that it is an isomorphism. Since
h is adapted to log order, the canonical Kähler–Einstein metric ω := τ ∗h for
TX (− log D)|U is also adapted to log order. It follows from Theorem A.7 that D
cannot be singular. The contradiction is obtained, and thus the period map is not a
uniformizing mapping. We proved Theorem 5.7.(ii).

Let us show that KX + D is big, nef and ample over X − D. Note that the metric
det ω−1 for (KX + D)|U is adapted to log order, and that

√−1

2π
Rdetω−1((KX + D)|U ) = (n + 1)ω.

By Lemma 5.5, the hermitian metric det ω−1 extends to a singular hermitian met-
ric hKX+D for KX + D with zero Lelong numbers. Hence KX + D is nef. Since√−1RhKX+D (KX + D) > 0 on X − D, KX + D is thus big and ample over X − D.
We finish the proof of the theorem. ��
Remark 5.8 Note that the asymptotic behavior of the metric (5.3.13) is exactly the
same as that of the Kähler–Einstein metric for the ball quotient near the boundary of
its toroidal compactification (see [44, eq. (8) on p. 338]). This is indeed the hint for
our construction of h̃.

Remark 5.9 We expect that Theorem 5.7.(ii) cannot happen. This is the case when
dim X = 2. Indeed, when the Miyaoka–Yau type equality in (1.1.2) holds, together
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with the conclusion that KX + D is big, nef and ample over X − D in Theorem
5.7, it follows from [34] that X − D is uniformized by B

2, which is a contradiction to
Theorem 5.7.(ii). This is not surprising: consider the smooth toroidal compactification
X of a two dimensional ball quotient B

2
/� with D := X − B

2
/�, (1.1.3) holds by

Theorem B. Let x ∈ D and let π : Y = Blx X → X . Then Y is a projective surface
compactifying B

2
/� with the boundary DY := π∗D a simple normal crossing (not

smooth) divisor. However, one has

3c2(�
1
Y (log DY )) − c1(�

1
Y (log DY ))2 = 1,

which violates the condition of uniformization in Theorem 5.7.

6 Higgs bundles associated to non-compact ball quotients

In this section, we will prove Theorem B. Sections 6.1 and 6.2 are technical prelimi-
naries. In Sect. 6.3 we prove that a log Higgs bundle (E, θ) on a compact Kähler log
pair is slope polystable with respect to some polarization by big and nef cohomology
(1, 1)-class, if (E, θ) admits a Hermitian–Yang–Mills metric with “mild singularity”
near the boundary divisor. In Sect. 6.4 we use the Bergman metric for quotients of
complex unit balls by torsion free lattices to construct such Hermitian–Yang–Mills
metric. This proves Theorem B.

6.1 Notions of positivity for curvature tensors

We recall some notions of positivity for Higgs bundles in [20, §1.3].
Let (E, θ) be a Higgs bundle endowed with a smooth metric h. For any x ∈ X , let

e1, . . . , er be a frame of E at x , and let e1, . . . , er be its dual in E∗. Let z1, . . . , zn be
a local coordinate centered at x . We write

Fh(E) = Rh(E) + [θ, θh] = Rβ

j k̄α
dz j ∧ dz̄k ⊗ eα ⊗ eβ

Set R jk̄αβ̄ := hγ β̄ R
γ

j k̄α
, where hγ β̄ = h(eγ , eβ). Fh(E) is calledNakano semi-positive

at x if

∑

j,k,α,β

R jk̄αβ̄u
jαukβ ≥ 0

for any u = ∑
j,α u

jα ∂
∂z j

⊗eα ∈ (T 1,0
X ⊗E)x . (E, θ, h) is called Nakano semipositive

if Fh(E) is Nakano semi-positive at every x ∈ X . When θ = 0, this reduces to the
same positivity concepts in [19, Chapter VII, §6] for vector bundles.

We write

Fh(E) ≥Nak λ(ω ⊗ 1E ) for λ ∈ R
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if

∑

j,k,α,β

(R jk̄αβ̄ − λω j k̄hαβ̄)(x)u jαukβ ≥ 0

for any x ∈ X and any u = ∑
j,α u

jα ∂
∂z j

⊗ eα ∈ (T 1,0
X ⊗ E)x .

Let us recall the following lemma in [20, Lemma 1.8].

Lemma 6.1 Let (E, θ, h) be a Higgs bundle on a Kähler manifold (X , ω). If there is
a positive constant C so that |Fh(x)|h,ω ≤ C for any x ∈ X, then

Cω ⊗ 1E ≥Nak Fh ≥Nak −Cω ⊗ 1E .

The following easy fact in [20, Lemma 1.9] will be useful in this paper.

Lemma 6.2 Let (E1, θ2, h1) and (E2, θ2, h2) are two metrized Higgs bundles over a
Kähler manifold (X , ω) such that |Fh1(x)|h1,ω ≤ C1 and |Fh2(x)|h2,ω ≤ C2 for all
x ∈ X. Then for the hermitian vector bundle (E1 ⊗ E2, h1h2), one has

|Fh1⊗h2(x)|h1⊗h2,ω ≤
√
2r2C2

1 + 2r1C2
2

for all x ∈ X. Here ri := rankEi .

6.2 Some pluripotential theories

In this subsection we recall some results of deep pluripotential theories in [4,26]. The
results in this subsection will be used in the proof of Proposition 6.6. Let us first recall
the definitions of big or nef cohomology (1, 1)-classes in [18, §6].

Definition 6.3 Let (X , ω) be a compact Kähler manifold. Let α ∈ H1,1(X , R) be a
cohomology (1, 1)-class of X . The class α is nef (numerically eventual free) if for any
ε > 0, there is a smooth closed (1, 1)-form ηε ∈ α so that ηε ≥ −εω. The class α is
big if there is a closed positive (1, 1)-current T ∈ α so that T ≥ δω for some δ > 0.
Such a current T will be called a Kähler current.

Let X be a complex manifold of dimension n and let U ⊂ X be a Zariski open set
of X . Pick a smooth hermitian form ω on X . For any smooth differential form η of
degree p on U so that

∫

U
|η|ω ∧ ωn < +∞,

one can trivially extend η to a current Tη on X of degree n − p by setting

〈Tη, u〉 :=
∫

U
η ∧ u (6.2.1)
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where u is the any test form of degree p which has compact support. In general, Tη

might not be closed even if η is closed.
Let (X , ω) be a compact Kähler manifold of dimension n. Let α1, . . . , αn be big

cohomology classes. Let Ti ∈ αi be positive closed (1, 1)-currents whose local poten-
tial is locally bounded outside a closed analytic subvariety of X (a particular case of
small unbounded locus of [4, Definition 1.2]). In this celebrated work by Boucksom-
Eyssidieux-Guedj-Zariahi [4], they defined non-pluripolar product for these currents

〈T1 ∧ · · · ∧ Tp〉

which is a closed positive (p, p)-current, and does not charge on any closed proper
analytic subsets. Therefore, if we assume further that Ti is smooth over X − A where
A is a closed analytic subvariety of X , then 〈T1 ∧ · · · ∧ Tp〉 is nothing but the trivial
extension of the (p, p)-form (T1 ∧ · · · ∧ Tp)|X−A to X .

Following [4, Definition 1.21], for a big class α, a positive (1, 1)-current T ∈ α

has full Monge-Ampère mass if

∫

X
〈T n

i 〉 = Vol(α).

The set of such positive currents in α with full Monge-Ampère mass is denoted by
E(α). We will not recall the definition of the volume of big classes by Boucksom in
[8]. We just mention that when the class α is big and nef, one has

Vol(α) = αn .

The following lemma will be used in Sect. 6.3.

Lemma 6.4 Let (X , ω) be a compact Kähler manifold and let D be a simple normal
crossing divisor on X. Let S be a closed positive (1, 1)-current on X so that S|X−D

is a smooth (1, 1)-form over X − D which is strictly positive at one point and has at
most Poincaré growth near D. Then the cohomology class α := {S} is big and nef,
and S ∈ E(α).

Proof Let T be the Kähler current on X constructed in Remark 2.5. Since T |X−D has
at most Poincaré growth near D, there exists a constant C1 > 0 so that

C1T − S ≥ 0.

Pick any point x ∈ D. Then there exists some admissible coordinates (U ; z1, . . . , zn)
centered at x so that the local potential ϕ of S satisfies that

ϕ ≥ −C1 log

(

−
�∏

i=1

log |z1|2
)

− C2

123



A characterization of complex quasi-projective…

for some constant C2 > 0. Hence S has zero Lelong numbers everywhere and thus α

is nef. Since S is strictly positive at one point on X − D, it is big by [8]. It follows
from [26, Proposition 2.3] that S ∈ E(α). The lemma is proved. ��
Let us recall an important theorem in [4].

Theorem 6.5 [4, Corollary 2.15] Let (X , ω) be a compact Kähler manifold of dimen-
sion n. Let α1, . . . , αn be big and nef classes on X. For Ti ∈ E(αi ) which are all
smooth outside a closed proper analytic subset A, one has

∫

X−A
T1 ∧ · · · ∧ Tn =

∫

X
〈T1 ∧ · · · ∧ Tn〉 = α1 · · · αn .

6.3 Hermitian–Yang–Mills metric and stability

Let (X , ω) be a compact Kähler manifold and let D be a simple normal crossing
divisor on X . For applications of birational geometry, one usually considers more
general polarization by big and nef line bundles. In this subsection, we will prove
that a log Higgs bundle (E, θ) on (X , D) is μα-polystable if (E, θ)|X−D admits a
Hermitian–Yang–Mills metric whose growth at infinity is “mild”, where α is certain
big and nef cohomology class. When dim X = 1 or D = ∅ and the polarization is
Kähler, this has been proved by Simpson [51,52]. As we have seen in Theorem 2.8,
when X is projective and both the first and second Chern classes of E vanish and the
polarization is an ample line bundle, this result has been proved by Mochizuki.

We start with the following technical result, which is strongly inspired by the deep
result of Guenancia [27, Proposition 3.8].

Proposition 6.6 Let (X , ω0) be a compact Kähler manifold and let D be a simple
normal crossing divisor on X. Let (E, θ) be a log Higgs bundle on (X , D). Let α

be a big and nef cohomology (1, 1)-class containing a positive closed (1, 1)-current
ω ∈ α so that ω|X−D is a smooth Kähler form and has at most Poincaré growth near
D. Assume that there is a hermitian metric h for (E, θ)|X−D which is adapted to log
order (in the sense of Definition 5.1) and is acceptable (in the sense of Definition 5.2).
Then for any saturated Higgs subsheaf G ⊂ E, one has

c1(G) · αn−1 =
∫

X−D−Z
Tr(

√−1RhG (G)) ∧ ωn−1 (6.3.1)

where Z is the analytic subvariety of codimension at least two so that G|X−Z ⊂ E |X−Z

is a subbundle, and hG is the metric on G induced by h.

Proof By Remark 2.5, one can construct a Kähler current

T := ω0 − √−1∂∂ log

(

−
�∏

i=1

log |ε · σi |2hi
)

, (6.3.2)
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over X , whose restriction on X − D is a complete Kähler form ωP , which has the
same Poincaré growth near D. Here σi is the section H0(X ,OX (Di )) defining Di ,
and hi is some smooth metric for the line bundle OX (Di ). Since we assume that h is
acceptable, (after rescaling T by multiplying a constant) one thus has

|Fh(E)|h,ωP ≤ 1.

By Lemma 6.1, one has

−1 ⊗ ωP ≤Nak Fh(E) ≤Nak 1 ⊗ ωP

over X − D.
We first consider the case that G is an invertible saturated subsheaf of E which is

invariant under θ . Then the metric h of E induces a singular hermitian metric hG for
G defined on the whole X , which is smooth on on X◦ := X − D − Z . The curvature
current

√−1RhG (G) is a closed (1, 1)-current on X − D, which is a smooth (1, 1)-
form on X◦. Define by π : E |X◦ → G|X◦ the orthogonal projection with respect
to h and π⊥ : E |X◦ → G⊥|X◦ the projection to its orthogonal complement. By the
Chern–Weil formula (see for example [51, Lemma 2.3]), over X◦, we have

RhG (G) = FhG (G) = Fh(E)|G + βh ∧ β − ϕ ∧ ϕh (6.3.3)

where Fh(E)|G is the orthogonal projection of Fh(E) on Hom(G,G)|X◦ = OX◦ ,
and β ∈ A 1,0(X◦,Hom(G,G⊥)) is the second fundamental form, and ϕ ∈
A 1,0(X◦,Hom(G⊥,G)) is equal to θ |G⊥ . Hence

√−1RhG (G) ≤ √−1Fh(E)|G .
For any local frame e of G|X◦ , note that

|e|2h · √−1Fh(E)|G = 〈√−1Fh(E)(e), e〉h ≤ 〈1 ⊗ ωPe, e〉h = |e|2h · ωP

Hence
√−1Fh(E)|G − ωP is a semi-negative (1, 1)-form on X◦, and thus over X◦

one has

−√−1RhG (G) + T ≥ ωP − √−1Fh(E)|G ≥ 0

Since we assume that (E, h) is adapted to log order, (G−1|X−Z , h−1
G |X−Z ) is thus

adapted to log order for the log pair (X − Z , D − Z). By Lemma 5.5 and (6.3.2),
−√−1RhG (G) + T extends to a closed positive (1, 1)-current on X − Z .

Since Z is of codimension at least two, a standard fact in pluripotential theory (see
[48, Theorem 3.3.42]) shows that −√−1RhG (G) + T extends to a positive closed
(1, 1)-current on the whole X .

Denote by s ∈ H0(X , E ⊗G−1) the section defining the inclusion G → E . We fix
a smooth hermitian metric h0 forG and we define a function H := |s|2

h·h−1
0

= hG ·h−1
0

on X − D. Then

√−1∂∂ log H = √−1Rh0(G) − √−1RhG (G). (6.3.4)
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Hence there is a constant C0 > 0 so that

√−1∂∂ log H + C0T ≥ T . (6.3.5)

By Lemma 6.4,ω ∈ E(α). Since
√−1Rh0(G) is a smooth (1, 1)-form on X , it follows

from Theorem 6.5 that

∫

X◦

√−1Rh0(G) ∧ ωn−1 = c1(G) · αn−1.

To prove (6.3.1), by (6.3.4) and the above equality it suffices to prove that

∫

X◦

√−1∂∂ log H ∧ ωn−1 = 0. (6.3.6)

We will pursue the ideas in [27, Proposition 3.8] to prove this equality.
Let us take a log resolution μ : X̃ → X of the ideal sheaf I defined by s ∈

H0(X , E⊗G−1), withOX̃ (−A) = μ∗I and D̃ := μ−1(D) a simple normal crossing
divisor. Let us denote by (Ẽ, θ̃ ) the induced log Higgs bundle on (X̃ , D̃) by pulling
back (E, θ) via μ. Then the metric h̃ := μ∗h for (Ẽ, θ̃ )|X̃−D̃ is also adapted to log
order and acceptable by Lemma 5.3.

Note that Supp(OX/I ) = Z . Write G̃ := μ∗G. There is a nowhere vanishing
section

s̃ ∈ H0(X̃ , Ẽ ⊗ G̃−1 ⊗ OX̃ (−A))

so that μ∗s = s̃ · σA, where σA is the canonical section in H0(X̃ ,OX̃ (A)) which
defines the effective exceptional divisor A.

Fix a Kähler form ω̃ on X̃ , as Remark 2.5 we construct another Kähler current

T̃ := ω̃ − √−1∂∂ log

(

−
m∏

i=1

log |ε · σ̃i |2h̃i
)

, (6.3.7)

over X̃ , whose restriction on X̃ − D̃ is a complete Kähler form, which has the same
Poincaré growth near D̃. Here σ̃i is the section H0(X ,OX (D̃i )) defining D̃i , and h̃i
is some smooth metric for the line bundle OX̃ (D̃i ).

Let us fix a smooth hermitian metric hA for OX̃ (A). Write H̃ := |s̃|2
h̃·μ∗h−1

0 ·h−1
A
.

Since h̃ is adapted to log order and s̃ is nowhere vanishing, there is a constantC1,C2 >

0 so that

log H̃ ≥ C1ϕP − C2, (6.3.8)
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where we denote by

ϕP := − log

(

−
�∏

i=1

log |ε · σ̃i |2h̃i
)

.

Since h̃ := μ∗h for (Ẽ, θ̃ )|X̃−D̃ is acceptable, by same arguments as those for (6.3.5),
one can show that

√−1∂∂ log H̃ + C3T̃ ≥ T̃

over X̃− D̃ for some constantC3 > 0. Note that the local potential of
√−1∂∂ log H̃+

C3T̃ is bounded from below by (C1+C3)ϕP according to (6.3.8). By [26, Proposition
2.3], one has

√−1∂∂ log H̃ + C3T̃ ∈ E({C3T̃ }).

One can check that μ∗ω ≤ C4T̃ for some constant C4 > 0. By Lemma 6.4 again,
μ∗ω ∈ E(μ∗α). Hence by Theorem 6.5 one has

∫

μ−1(X◦)
(
√−1∂∂ log H̃ + C3T̃ ) ∧ μ∗ωn−1 = {C3T̃ } · μ∗αn−1.

Recall that T̃ ∈ E({T̃ }) by Lemma 6.4. Hence

∫

μ−1(X◦)
C3T̃ ∧ μ∗ωn−1 = {C3T̃ } · μ∗αn−1.

One thus has
∫

μ−1(X◦)

√−1∂∂ log H̃ ∧ μ∗ωn−1 = 0. (6.3.9)

Note that over X̃ − D̃, one has

√−1∂∂ log H̃ + [A] − √−1RhA(A) = μ∗√−1∂∂ log H

where [A] is the current of integration of A. Hence over μ−1(X◦) � X◦, one has
√−1∂∂ log H̃ − √−1RhA (A) = μ∗√−1∂∂ log H . (6.3.10)

By Theorem 6.5 again,

∫

μ−1(X◦)

√−1RhA(A) ∧ μ∗ωn−1 = c1(A) · μ∗αn−1 = 0, (6.3.11)
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where the last equality follows from the fact that A is μ-exceptional. (6.3.9), (6.3.10)
together with (6.3.11) shows the desired equality (6.3.6). We finish the proof of (6.3.1)
when rank G = 1.

Assume that rank G = r . We replace (E, θ, h) by the wedge product (Ẽ, θ̃ , h̃) :=
�r (E, θ, h). By Lemma 6.2, the inducedmetric h̃ is also acceptable and one can easily
check that it is also adapted to log order. Note that detG is also invariant under θ̃ , and
that det G → �r E . We then reduce the general cases to rank 1 cases. The proposition
is thus proved. ��

Let us state and prove the main result in this section.

Theorem 6.7 Let X be a compact Kähler manifold and let D be a simple normal
crossing divisor on X. Let α be a big and nef cohomology (1, 1)-class containing a
positive closed (1, 1)-current ω ∈ α so that ω|X−D is a smooth Kähler form and has
at most Poincaré growth near D. Let (E, θ) be a log Higgs bundle on (X , D). Assume
that there is a hermitian metric h on (E, θ)|X−D such that

• it is adapted to log order (in the sense of Definition 5.1);
• it is acceptable (in the sense of Definition 5.2);
• it is Hermitian–Yang–Mills:

�ωFh(E)⊥ = 0.

Then (E, θ) is μα-polystable.

Proof We shall use the same notations as those in Proposition 6.6.
Let G be any saturated Higgs-subsheaf G ⊂ E , and denote by Z the analytic

subvariety of codimension at least two so that G|X−Z ⊂ E |X−Z is a subbundle. By
the Chern–Weil formula again, over X◦ := X − Z − D we have

�ωFhG (G) = �ωTr(Fh(E))

rank E
⊗ 1G + �ω(βh ∧ β − ϕ ∧ ϕh).

where β ∈ A 1,0(X◦,Hom(G,G⊥)) is the second fundamental form of G in E with
respect to the metric h, and ϕ ∈ A 1,0(X◦,Hom(G⊥,G)) is equal to θ |G⊥ .

Hence

∫

X◦
Tr(

√−1FhG (G)) ∧ ωn−1

=
∫

X◦
rank G

rank E
Tr(

√−1Fh(E)) ∧ ωn−1 − (|β|2h + |ϕ|2h)
ωn

n
.

ByProposition 6.6 togetherwith the above inequality, one concludes the slope inequal-
ity

μα(G) ≤ μα(E)
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and the equality holds if and only if β ≡ 0 and ϕ ≡ 0. We shall prove that if the above
slope equality holds, G is a sub-Higgs bundle of E , and we have the decomposition

(E, θ) = (G, θ |G) ⊕ (F, θF )

where (F, θF ) is another sub-Higgs bundle of E .
Set rank E = r and rank G = m. We first prove that G is a subbundle of E . It is

equivalent to show that detG → �r E is a subbundle, and we thus reduce the problem
to the case that rank G = 1. Assume that μα(G) = μα(E) and thus β ≡ 0 and ϕ ≡ 0.
By (6.3.3), over X◦ one has

√−1RhG (G) = √−1Fh(E)|G ≥ −T |X◦ , (6.3.12)

where T is the Kähler current defined in (6.3.2). By Lemma 5.5,
√−1RhG (G) + T

extends to a closed positive (1, 1)-current on X − Z , and thus to the whole X .
Assume now x0 ∈ X is a point where (E/G)x0 is not locally free. Take a local

holomorphic frame e of G on some open neighborhood (U ; z1, . . . , zn) of x , and a
holomorphic frame e1, . . . , er of E . Then e = ∑r

i=1 fi (x)ei , where fi ∈ O(Ui ) so
that f1(x0) = · · · = fr (x0) = 0. By the asssumption that h is adapted to log order,
one concludes that

log |e|2h ≤ C1 log(|z1|2 + · · · + |zn|2) + C2 log

(

− log

(
�∏

i=1

|z|2i
))

(6.3.13)

for some positive constants C1 and C2. On the other hand, by (6.3.12) on U we have

√−1∂∂ log |e|2h = −√−1RhG (G) ≤ T .

By the construction of T , we conclude that

log |e|2h ≥ −C3 log

(

− log

(
�∏

i=1

|z|2i
))

− C4,

for some positive constants C3 and C4. This contradicts with (6.3.13). Hence we
conclude that when the slope equality holds, G is a subbundle of E .

We now find the desired decomposition of (E, θ). By the above argument, when
the slope equality holds, (G, θ |G) is a Higgs subbundle of (E, θ) (not assumed to
be rank 1 now), and β ≡ 0 and ϕ ≡ 0. This means that the orthogonal projection
π : E |X−D → G|X−D is holomorphic, that G⊥ is a holomorphic subbundle of
E |X−D , and that

(E, θ)|X−D = (G, θ |G)|X−D ⊕ (G⊥, θ |G⊥). (6.3.14)

We shall prove that π extends to a morphism π̃ : E → G so that π ◦ ι = 1. For any
point x0 ∈ D, we pick an admissible coordinate (U ; z1, . . . , zn) centered at x0 and
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a holomorphic fame (e1, . . . , er ) for E |U adapted to log order so that (e1, . . . , em)

is a holomorphic fame for G|U . Write π(e j |X−D) = ∑r
i=1 fi (x)ei , where fi (x) ∈

O(U − D). For j = 1, . . . ,m, one has π(e j |X−D) = e j and it extends naturally. For
j > m and some 1 < r < 1, over U∗(r) one has

C

(

− log

(
�∏

i=1

|z|2i
))M

≥ |e j |2h ≥ |π(e j )|2h ≥ C−1

(

− log

(
�∏

i=1

|z|2i
))−M r∑

i=1

| fi |2

for some C, M > 0, where the second inequality is due to the fact that π is the
orthogonal projection with respect to h, and the last inequality follows from the fact
that h is adapted to log order. Hence each | fi | must be locally bounded from above on
U , and it thus extends to a holomorphic function on U . We conclude that π extends
to a morphism π̃ : E → G, whose rank is constant and π̃ ◦ ι = 1, where ι : G → E
denotes the inclusion. Let us define by F := ker π̃ , which is a subbundle of E so
that E = G ⊕ F . Note that F |X−D = G⊥. By (6.3.14) together with the continuity
propery we conclude that F is a sub-Higgs bundle of (E, θ), and that (E, θ) =
(G, θ |G) ⊕ (F, θ |F ). Since h|G (resp. h|F ) is a Hermitian–Yang–Mills metric for
(G, θ |G) (resp. (F, θ |F )) satisfying the three conditions in the theorem, we can argue
in the same way as above to decompose (G, θ |G) and (F, θ |F ) further to show that
(E, θ) is a direct sum of μα-stable log Higgs bundles with the same slope. Hence
(E, θ) is μα-polystable. We prove the theorem. ��

6.4 Application to toroidal compactification of ball quotient

Let� ∈ PU (n, 1) be a torsion free lattice, and letBn
/� be the associated ball quotient.

By the work of Baily–Borel, Siu–Yau and Mok [44], B
n
/� has a unique structure of

a quasi-projective complex algebraic variety (see for example [10, Theorem 3.1.12]).
When the parabolic subgroups of� are unipotent, by thework ofAsh et al. [2] andMok
[44, Theorem 1], B

n
/� admits a unique smooth toroidal compactification, which we

denote by X . Let us denote by D := X−B
n
/� the boundary divisor, which is a disjoint

union of abelian varieties. Let gB be the Bergman metric for B
n , which is complete,

invariant under PU (n, 1) and has constant holomorphic sectional curvature−1.Hence
it descends to a metricω on X−D. If we considerω as a metric for TX (− log D)|X−D ,
by [54, Proposition 2.1] it is good in the sense of Mumford [45, Section 1]. Therefore,
for any k ≥ 1, it follows from [45, Theorem 1.4] that the trivial extension of the Chern
form ck(TX−D, ω) onto X defines a (k, k)-current [ck(TX−D, ω)] on X , which repre-
sents the cohomology class ck(TX (− log D)) ∈ Hk,k(X). Let us first prove (1.1.3),
which is indeed an easy computation.

For any x0 ∈ X − D, we take a normal coordinate system (z1, . . . , zn) centered at
x0 so that

ω = √−1
∑

1≤�,m≤n

δ�mdz� ∧ dz̄m −
∑

j,k,�,m

c jk�mz j z̄k + O(|z|3)
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where c jk�m is the coefficients of the Chern curvature tensor

Rω(TX ) =
∑

j,k,�,m

c jk�mdz j ∧ dz̄k ⊗
(

∂

∂z�

)∗
⊗ ∂

∂zm
.

By [43, p. 177], one has

c jk�m(x0) = −(δ jkδ�m + δ jmδk�). (6.4.1)

One can check that

nc1(TX−D, ω)2 − 2(n + 1)c2(TX−D, ω) ≡ 0.

We thus conclude that the Chern classes ck(�1
X (log D)) satisfies

nc1(�
1
X (log D))2 − 2(n + 1)c2(�

1
X (log D)) = 0.

Hence (1.1.3) in Theorem B holds.
For the log Hodge bundle (E, θ) = (E1,0 ⊕ E0,1, θ), given by

E1,0 := �1
X (log D), E0,1 := OX

with the Higgs field θ defined in (1.1.1), we shall prove that it is μα-polystable for the
big and nef polarization α in Theorem 6.7. We equipped (E1,0 ⊕ E0,1)|X−D with the
metric

h := ω−1 ⊕ hc (6.4.2)

where hc is the canonical metric onOX−D so that |1|hc = 1. Recall that the curvature
Fh(E) of the connection Dh := dh + θ + θh is

Fh(E) = Rh(E) + [θ, θh],

where Rh(E) is the Chern curvature of (E, h). An easy exercise shows that

√−1Fh(E) = ω ⊗ 1.

In particular, h is a Hermitian–Yang–Mills metric for (E, θ)|X−D . We shall show that
it satisfies the three conditions in Theorem 6.7. Indeed, we only have to check the first
two conditions since

√−1Fh(E)⊥ ≡ 0.
We first note that ω has at most Poincaré growth near D in the sense of Definition

2.4. Indeed, this follows easily from the Ahlfors–Schwarz lemma (see for exam-
ple [47, Lemma 2.1]) since the holomorphic sectional curvature of ω is −1. Hence
for any admissible coordinate system (U ; z1, . . . , zn) as in Definition 2.3, one has
|Fh(E)|h,ωP ≤ C , where ωP is the Poincaré metric on U∗.

By the following result, we see that h is adapted to log order.
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Lemma 6.8 ([44, eq. (8) on p. 338]) Let (X , D) be as above. Then for any
x ∈ D, there is an admissible coordinate (U ; z1, . . . , zn) at x so that the frame
z1

∂
∂z1

, ∂
∂z2

, . . . , ∂
∂zn−1

, ∂
∂zn

is adapted to log order (in the sense of Sect. 5.1) with
respect to the above metric ω.

Therefore, the metric h for (E, θ)|X−D satisfies the three conditions in Theorem 6.7.
In conclusion, (E, θ) is μα-polystable for the big and nef class α in Theorem 6.7

To finish the proof of Theorem B, we have to show that c1(KX + D) can be made
as a polarization in Theorem 6.7, which follows from the following result.

Lemma 6.9 [44, Proposition 1] The Kähler form (n+1)
2π ω on X − D defined above

extends to a closed positive (1, 1)-current� ∈ c1(KX +D)with zero Lelong numbers.
In particular, KX + D is big and nef.

6.5 Proof of Corollary C

We shall show how to apply Theorems A and B to derive Corollary C.

Proof of Corollary C We first assume that parabolic subgroups of � are unipotent. By
[44,Theorem1], there is a toroidal compactification X for the ball quotient X := B

n
/�,

so that D := X − X is a smooth divisor. Moreover, X is projective. Fix any ample
polarization L on X . By Theorem B, the log Higgs bundle (E, θ) := (�1

X
(log D) ⊕

OX , θ) on (X , D) defined in (1.1.1) is μL -polystable with

2c2(�
1
X
(log D)) − n

n + 1
c1(�

1
X
(log D))2 = 0. (6.5.1)

Let us denote by X
σ
and Dσ the conjugate varieties of X and D under σ . Hence X

σ
is

a smooth projective variety and Dσ is a smooth divisor on X
σ
. For any coherent sheaf

E on X
σ
, we denote by Eσ its conjugate under σ , which is also a coherent sheaf on X

σ
.

Note that the conjugate action induces a canonical isomorphism between cohomology
groups

�k : H2k(X , C)
�→ H2k(X

σ
, C),

and that Chern classes of vector bundles over X are preserved under σ in the sense
that �k(ck(F)) = ck(Fσ ) for any holomorphic vector bundle F over X . Since(
�1

X
(log D)

)σ = �1
X

σ (log Dσ ), (6.5.1) also holds for the log cotangent bundle

�1
X
(log D). Moreover, the conjugate of (E, θ) under σ is the log Higgs bundle

(Eσ , θσ ) := (�1
X

σ (log Dσ ) ⊕ OXσ , θσ ) on (X
σ
, Dσ ) defined in (1.1.1). Hence for

any Higgs subsheaf F of (E, θ), Fσ is also a Higgs subsheaf of (Eσ , θσ ) with the
slope inequalityμL(F) = μLσ (Fσ ). Hence (Eσ , θσ ) isμLσ -polystable. By Theorem
A, X

σ − Dσ is also a ball quotient, with X
σ
its toroidal compactification.

For a general torsion free lattice � ⊂ PU (n, 1), there is a finite index subgroup
�′ ⊂ � so that parabolic subgroups of �′ are unipotent (see for example [10, §3.3]).
Denote by X := B

n
/� and Y := B

n
/�′. Since the base change of an étale morphism
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is étale, we conclude that Y σ → Xσ is also a finite étale surjective morphism. By the
above result, Y σ is the ball quotient, and thus so is Xσ . Corollary C is proved. ��

Remark 6.10 In the above proof we show that a toroidal compactification of a ball
quotient is also a toroidal compactification of another ball quotient. As pointed out by
the referee, this fact follows from Corollary C directly. His/her elegant argument is as
follows: since anAbelian variety is simply an algebraic varietywith a group lawdefined
by regular functions, a Galois conjugate of the Abelian variety as a component of the
compactifying divisor is by itself an Abelian variety, which sits in the compactifying
divisor of the ball quotient obtained as the conjugate of the original one according to
Corollary C.
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Appendix A: Metric rigidity for toroidal compactification of non-
compact ball quotients

The main motivation of this appendix is to provide one building block for Theorem
5.7.(ii). Our main result, Theorem A.7, says that there is no other smooth compactifi-
cation for non-compact ball quotient than the toroidal one, so that the Bergman metric
grows “mildly” near the boundary. Besides its own interests, this result is applied
to show that the smoothness of D in Theorem A is necessary if one would like to
characterize non-compact ball quotients.

A.1: Toroidal compactifications of quotients by non-neat lattices

In this section, we recall a well known way of constructing the toroidal compactifica-
tions of ball quotients in the case where the lattice has torsion at infinity. The reader
will find more details about the natural orbifold structure on these compactifications
in [21]. For our purposes, the basic result given in Proposition A.1 will be sufficient.

Recall that we say that a lattice � ⊂ PU (n, 1) is neat (cf. [7]) if for any g ∈ �,
the subgroup of C

∗ generated by the eigenvalues of g is torsion free. This implies
that � is torsion free and that all parabolic elements of � are unipotent, so that the
toroidal compactifications of B

n
/� provided by [2,44] are smooth (there is no "torsion

at infinity"). Note that by [7, Proposition 17.4] in the arithmetic case, and [6], or [50,
Theorem 6.11] in general, any lattice in PU (n, 1) admits a finite index neat normal
sublattice.
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Proposition A.1 Let � ⊂ PU (n, 1) be a torsion free lattice, and let �′ ⊂ � be a
finite index normal neat sublattice. Let U = B

n
/�, U ′ = B

n
/�′, and denote by X ′ the

smooth toroidal compactification of U ′ = B
n
/�′ as constructed in [2,44].

Then the natural action of the finite group G = �/�′ on U ′ extends to X ′, and
the quotient X = X ′

/G is a normal projective space, with boundary X − U made
of quotient of abelian varieties by finite groups. Moreover, when � is arithmetic, X
coincides with the toroidal compactification of U constructed in [2].

Before explaining how to prove Proposition A.1, let us recall the construction of
X ′ as it is defined in [44] (see also [11] for a similar discussion).

Each component D of X ′ − U ′ is associated to a certain �′-orbit of points of
∂B

n , whose points are called the �′-rational boundary components of ∂Bn (cf. [2,
Chapter 3] or [44, §1.3]). Let b ∈ ∂B

n be such a point, and let Nb ⊂ PU (n, 1) be its
stabilizer. This is a maximal parabolic real subgroup of PU (n, 1); let us denote byWb

its unipotent radical. This group is an extension 1 → Ub → Wb
π→ Ab → 1, where

Ab ∼= C
n−1, and Ub ∼= R is the center of Wb. Let Lb = Nb/Wb. This reductive group

can be embedded as a Levi subgroup in Nb, so that Nb = Wb · Lb. Moreover, we have
a further decomposition Lb = U (n−1)×R. (all this description can be obtained e.g.
by specializing the discussion of [3, Section 1.3] or [2, Section 4.2] to the case of the
ball).

This Lie theoretic description of Nb can be understood more easily by expressing
the action of the previous groups on the horoballs tangent to b. Let (S(N )

b )N≥0 be the

family of these horoballs. Each S(N )
b ⊂ B

n can be described as an open subset in a
Siegel domain of the third kind, as follows:

S(N )
b � {(z′, zn) ∈ C

n−1 × C | Im zn > ||z′||2 + N }. (A.1.1)

We have S(0)
b

∼= B
n , and when b = (0, ..., 0, 1), the change of coordinates between

the two descriptions of the ball is given by the Cayley transform

(w1, . . . , wn−1, wn) ∈ B
n �→ (z′, zn)

=
(

w1

1 − wn
, . . . ,

wn−1

1 − wn
, i
1 + wn

1 − wn

)
∈ S(0)

(0,...,0,1).

Now, if g ∈ Wb, we can write g = (s, a) accordingly to the decomposition Wb
sets=

Ub × Ab (Ub ∼= R, Ab ∼= C
n−1), and we have, for any (w′, wn) ∈ S(N )

b :

g · (z′, zn) = (z′ + a, zn + i ||a||2 + 2ia · z′ + s). (A.1.2)

We check easily that S(N )
b is preserved byWb. Also, for any g ∈ Lb � U (n − 1)× R,

we can write g = (r , t), and we then have

g · (z′, zn) = (et (r · z′), e2t zn). (A.1.3)
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We are now ready to describe the quotients of S(N )
b by the action of �′ ∩ Nb. Note

first that since �′ is neat, we have �′ ∩ Nb ⊂ Wb. Then, by the discussion above,

we obtain a decomposition as sets Nb
sets= (Cn−1 × R) × (U (n − 1) × R), in which

the elements of �′ ∩ Nb can be written as (a, t, Id, 0). It also follows from [44] that
�′ ∩ Ub = Zτ for some τ ∈ Ub � R. This last fact permits to form the quotient

G(N )
b = S(N )

b /Ub ∩ �′; using (A.1.1), we can also express the latter quotient as an
open subset of C

n−1 × C
∗:

G(N )
b = {(w′, wn) ∈ C

n−1 × C
∗ | |wn|e 2π

τ
||w′||2 < e− 2π

τ
N },

and the quotient is then realized by the map (z′, zn) ∈ S(N )
b → (z′, e 2iπ

τ
zn ) ∈ G(N )

b .

The group �b := π(�′ ∩ Wb) ⊂ C
n−1 is an abelian lattice, acting on G(N )

b ⊂
C
n−1 × C

∗ as

a · (z′, zn) = (z′ + a, e− 2π
τ

||a||2− 4π
τ
a·z′ zn),

Clearly, the closure G(N )
b in C

n is an open neighborhood of C
n−1 × {0}. We can form

the quotient

�
(N )
b = G(N )

b /�b

which is then isomorphic to a tubular neighborhood of the abelian variety C
n−1

/�b in
some negative line bundle. Finally, the toroidal compactification X ′ can be obtained
by glueing the open varieties �

(N )
b toU ′ (as b runs among a system of representatives

of the rational boundary components, and N is large enough).
Our claims about X can be derived from the following lemma.

Lemma A.2 Let b ∈ ∂B
n be a �′-rational boundary component, and let g ∈ �. Then

the point b′ = g ·b is also�′-rational, and there exists N , N ′ > 0, for which g induces

an isomorphism S(N )
b

g→ S(N ′)
b′ , yielding in turn a unique compatible biholomorphism

�
(N )
b → �

(N ′)
b′ .

Proof As �′ is torsion free, a point z ∈ ∂B
n is �′-rational if and only ifWb ∩�′ �= {e}

(see [44, §1.3]). Since g normalizes �′, we have g(Wb ∩ �′)g−1 ⊂ Wb′ ∩ �′ so b′ is
�′-rational if b is.

As for our second claim, since the set of horoballs is preserved by the action of
PU (n, 1), we may find N , N ′ such that g induces a isomorphism S(N )

b → S(N )

b′ . Let

(x ′, xn) (resp. (y′, yn)) be standard coordinates on S(N )
b (resp. S(N ′)

b ) as in (A.1.1),
chosen so that (y′, yn) = (x ′, xn) ◦ u for some u ∈ U (n) satisfying u · b′ = b. Then
ug ∈ Nb, and by (A.1.2) and (A.1.3), we have (y′, yn)◦ g = f (x ′, xn) for some affine
map f .

Since g normalizes�′, we have g(�′∩Ub)g−1 = �′∩Ub′ , so themap S(N )
b

g→ S(N ′)
b′

passes to the quotient to give a map g̃ : G(N )
b →G(N ′)

b′ . Using an explicit expression
for the affine map f , we find an (a priori multivaluate) expression for g̃ as
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(z′, zn) ∈ G(N )
b

g̃�→ (A · z′ + u log zn + z′0, C zan e
b·z′) ∈ G(N ′)

b′

for some A ∈ Mn−1(C), some vectors u, b, z′0 ∈ C
n−1 and C, a ∈ C. The formula

above induces a well-defined, invertible map G(N )
b → G(N ′)

b′ , so we have u = 0, a =
±1. This implies that g̃ extends holomorphically to g̃ : G(N )

b → G(N ′)
b′ . Finally, as

g normalizes �′, g̃ passes to the quotient by �b and �b′ , giving a biholomorphism

�
(N )
b → �

(N ′)
b′ . ��

Going back to the proof of PropositionA.1,we see that LemmaA.2 permits to define
a unique action of the quotient G = �/�′ on X ′, compatible with its natural action on
U ′. We then let X := X ′

/G. The following lemma ends the proof of Proposition A.1,
and clarifies the link with the construction of [2].

Lemma A.3 The variety X defined above does not depend on the choice of �′. When
� is arithmetic, X coincides with the toroidal compactification of U constructed in
[2].

Proof Let �′, �′′ ⊂ � be two neat lattices of finite index, and let us show that the
varieties constructed from �′ and �′′ are the same. Since � ∩ �′ also has finite index
in �, we may assume �′′ ⊂ �′. By Lemma A.2, the action of two lattices �′′ ⊂ �′ are
compatible with each other over each set �(N )

b , which suffices to prove the first point.
Let us prove the second point. The construction of the toroidal compactification of

[2] depends on a certain choice of �-admissible polyhedra for each rational boundary
component (see [2, Definition 5.1]). In the case of the ball, since dimRUb = 1 for any
b ∈ ∂B

n , there is only one such possible choice (cf. [loc. cit., Theorem 4.1.(2)]). The
claim now follows from the functoriality of compatible toroidal compactifications (see
[28, Lemma 2.6]), since “choices” of polyhedra admissible for two lattices �′ ⊂ �

are thus automatically compatible with each other. ��
Note that even though this construction of X is well adapted to our purposes, it

should not be used to define X as an orbifold, as it has the drawback of producing
artificial ramification orders along the boundary components of X . As explained in
[21], a better way of proceeding is to construct directly open neighborhoods of the
components of X −U as stacks, before glueing them to U .

A.2. Main results

Let us first begin with the following lemma.

Lemma A.4 Let Y be the toroidal compactification of the ball quotient U := B
n
/�

by a torsion free lattice � ⊂ PU (n, 1) whose parabolic isometries are all unipotent.
Let X be another projective compactification of U, and assume that X has at most klt
singularities.

Then the identity map of U extends to a birational morphism f : X → Y .
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Proof The identity map of U defines a birational map f : X ��� Y . Assume by
contradiction that f is not regular. One can take a resolution of indeterminacies μ :
X̃ → X for f so that μ|μ−1(U ) : μ−1(U )

∼−→ U is an isomorphism:

X̃

X Y

μ f̃

f

By the rigidity result (see [17, Chapter 3, Lemma 1.15]), there is a fiber μ−1(z) with
z ∈ D which is not contracted by f̃ . Clearly, we have f̃ (μ−1(z)) ⊂ Y −U .

Since X has klt singularities, the work of Hacon–McKernan [29] implies that every
fiber of μ is rationally chain connected. Thus, f̃ (μ−1(z)) is a point since abelian
varieties do not contain rational curves. This gives a contradiction. ��
Remark A.5 If we make the more restrictive hypothesis that X has at most quotient
singularities, we can replace the use of [29] by the work of Kollar [36], which implies
that each fiber of μ is simply connected. As Y − U is a disjoint union of abelian
varieties, this also implies that the image of f̃ : μ−1(z) → Y −U must be a point.

Let us introduce a natural class of pairs under which our rigidity theorem will hold.

Definition A.6 Let (X , D) be a pair consisting of normal algebraic variety and a
reduced divisor. We say that (X , D) has algebraic quotient singularities if it admits
a finite affine cover (Xi )i∈I , such that each (Xi , D ∩ Xi ) is the quotient of a smooth
SNC pair (Ui , Di ) by a finite group Gi leaving Di invariant.

Note that for any lattice � ⊂ Aut(Bn), if X is the toroidal compactification of
U = B

n
/� described in Section 1, then (X , X−U ) has algebraic quotient singularities.

We can now state our main result as follows.

Theorem A.7 Let U := B
n
/� be an n-dimensional ball quotient by a torsion free

lattice � ⊂ PU (n, 1). Let X be a klt compactification of U, and let D := X −U.
Let D(1) ⊂ D be the divisorial part of D. If the Kähler–Einstein metric ω on

the bundle TX (− log D(1))|U is adapted to log order near the generic point of any
component of D(1), then (X , D) identifies with the toroidal compactification of U.

Remark A.8 (1) Under the more restrictive assumption that (X , D) has algebraic quo-
tient singularities, the use of Lemma A.4 in our proof below can be made without
appealing to the difficult result of [29] (see Remark A.5).

(2) As an easy consequence of Theorem A.7, we can remark that there is no klt
compactification X of U such that X −U has codimension ≥ 2.

Corollary A.9 With the same assumptions as in TheoremA.7, if X is smooth and D has
simple normal crossings, then D is in fact smooth, and each component is a smooth
quotient of an abelian variety A by some finite group acting freely on A.

123



A characterization of complex quasi-projective…

Let us prove Theorem A.7. Let �′ ⊂ � be a subgroup of finite index so that all
parabolic elements of �′ are unipotent. Writing U ′ := B

n
/�′, this gives a finite étale

surjective morphism U ′ → U .

Let X ′ be the normalization of X in the function field of U ′: this is a normal
projective variety X ′ compactifying U ′, with a compatible finite surjective morphism
μ : X ′ → X (see e.g. [1, Chapter 12, §9]). Since klt singularities are preserved
under finite surjective morphisms, the variety X ′ has at most klt singularities (see [31,
Corollary 5.20]).

Remark A.10 If (X , D) has algebraic quotient singularities, one sees easily that this is
also the case for X ′. To see this, form the fiber product Z ′ = Z ×X X ′, where Z → X
is an affine covering as in Definition A.6. By [37, Theorem 2.23], the variety Z ′,
endowed with it natural boundary divisor, has algebraic quotient singularities. Finally,
Lemma A.14 shows that Z ′ → X ′ is a quotient map, which gives the result.

Let Y ′ be the toroidal compactification of U ′, so that the boundary A := Y ′ − U ′
is a smooth divisor.

Lemma A.11 The identity map on U ′ extends as an isomorphism f : X ′ → Y ′. In
particular, there is a finite surjective morphism g : Y ′ → X , which identifies with the
étale and surjective map U ′ → U over X − D.

Proof Since X ′ is klt, Lemma A.4 shows that the identity map of U ′ extends to a
birational morphism f : X ′ → Y ′. Assume by contradiction that f is not an isomor-
phism. As Y ′ is smooth, it follows from [31, Corollary 2.63] that the exceptional set
Ex( f ) is of pure codimension one. Thus, the birational morphism f must contract an
irreducible divisorial component E of the boundary D′ := X ′ −U ′.

Denote by Dsing the singular locus of D, and let ω′ := μ∗ω, be the canonical
Kähler Einstein metric on U ′. Lemma A.12 below shows that ω′ is adapted to log-
order for TX ′◦(− log E◦), where X ′◦ := μ−1(X − Dsing), and E◦ := X ′◦ ∩ E . We
are going to derive a contradiction with the fact the E is contracted. Let A1 be the
component of A containing f (E).Wecan take admissible coordinates (W; z1, . . . , zn)
and (U;w1, . . . , wn) centered at somewell-chosen x ′ ∈ E∩X ′◦ and y := f (x ′) ∈ A1
respectively so that f (W) ⊂ U , and f |E : E → f (E) is smooth at x ′. Denote by
( f1(z), . . . , fn(z)) the expression of f within these coordinates. Then if the admissible
coordinates are chosen properly, one has

( f1(z), . . . , fn(z)) = (zm1
1 g1(z), . . . , z

mk
1 gk(z), gk+1, . . . , gn)

where g1(z), . . . , gk(z) are holomorphic functions defined on W so that gi (z) �= 0
and mi ≥ 1 for i = 1, . . . , k. Since E is exceptional, one has k ≥ 2. By the norm
estimate in [44, eq. (8) on p. 338], the Kähler–Einstein metric ω for TY (− log A)|U is
adapted to log order. More precisely, one has

|dw2|2ω−1 ∼ (− log |w1|2).
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Since f ∗d logw2 = m2d log z1 + d log g2(w), one thus has the following norm esti-
mate

|d log z1|2ω′−1 ≥ 1

m2
2

μ∗|d logw2|2ω−1 − 1

m2
2

μ∗|dg2
g2

|2
ω−1 ≥ C(− log |z1|2)

|z1|2m2

for some constants C > 0. Since d log z1 is a local nowhere vanishing section for
�1

X ′(log D′), we conclude that the metric ω′−1 for �1
X ′◦(− log D′◦) is not adapted to

log order, and so is ω′ for TX ′◦(− log D′◦). This gives a contradiction, and ends the
proof of the lemma. ��
Lemma A.12 With the notations of the proof of Lemma A.11, the metric ω′ is adapted
to log-order for TX ′◦(− log E◦).

Proof WriteW := μ−1(V). Since μ|W−D′ : W − D′ → V − D is a finite unramified
cover, the image of (μ|W−D′)∗

(
π1(W − D′)

)
is a subgroup of π1(W − D) � Z

of index m. Letting ν(z1, · · · , zn) = (zm1 , z2, . . . , zn), one has thus the following
commutative diagram

∗ × n−1 W

n V
ν|

∗×n−1

h◦

μ|W
�

so that h◦
∗×n−1 : ∗ × n−1 → W ∩ U ′ is an isomorphism. By the Riemann

removable singularities theorem, h extends to a holomorphicmap h : n → W , which
is easily seen to be surjective with finite fibers. Hence h is moreover biholomorphic.
(W; z1, . . . , zn; h) is therefore an admissible coordinate centered at x ′ with (z1 =
0) = W ∩ D′ so we can now identify μ with ν. Hence,

μ∗d log x1 = md log z1, μ
∗dx2 = dz2, . . . , μ

∗dxn = dzn,

and the frame (d log z1, dz2, . . . , dzn) for�1
X ′(log D′)|W is adapted to log order. This

shows that the metric ω′ is adapted to log order for TX ′◦(− log D′◦). ��
Wecan now conclude the case discussed in CorollaryA.9, where (X , D) is assumed

to be a smooth log-pair. Since the boundary of Y ′ − U ′ is smooth, this implies that
D must also be smooth. Moreover, for each connected component Ai of A, there is a
connected component Dj of D so that g|Ai : Ai → Dj is a finite surjective morphism,
which is also étale by the local description of μ given in the proof of Lemma A.12.
Hence in this case, Di is a smooth quotient of an abelian variety by the free action of
some finite group Gi . This suffices to establish Corollary A.9.

The proof of Theorem A.7 will be complete with the following lemma.

Lemma A.13 The variety X identifies with the quotient of Y ′ by the natural action of
G = �/�′. In particular, X ∼= Y .
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Proof This result comes right away fromLemmaA.14 below, takingM = Y ′, N = X ,
and G = G. Remark that we have R(Y ′)G = R(U ′)G = R(U ) = R(X) since
U = U ′

/G. For the second statement, remark that by Proposition A.1, the toroidal
compactification Y of U also identifies with the quotient Y ′

/G. Thus, there is an
isomorphism Y ∼= X compatible with the identity on U . Theorem A.7 is proved. ��
Lemma A.14 Let f : M → N be a finite surjective morphism between two normal
reduced schemes. Assume that M is acted upon by a finite groupoid G, and that f is
G-invariant. Suppose in addition that R(M)G = R(N ), where R(M), R(N ) are the
rings of rational functions on M, N. Then N is the quotient of M by G.
Proof It suffices to show that f∗(OM )G = ON . This is a local statement on the base,
so we may assume that N = Spec A, M = Spec B, with A is integrally closed. We
have BG ⊂ R(B)G = R(A) by assumption. Since A ⊂ B is finite, and A is integrally
closed, this implies BG ⊂ A, as required. ��
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