
DEFORMATION OPENNESS OF BIG FUNDAMENTAL GROUPS
AND APPLICATIONS

YA DENG, CHIKAKO MESE, AND BOTONG WANG

Abstract. In 2001, deOliveira, Katzarkov, and Ramachandran conjectured that the property of
smooth projective varieties having big fundamental groups is stable under small deformations.
This conjecture was proven by Benoît Claudon in 2010 for surfaces and for threefolds under
suitable assumptions. In this paper, we prove this conjecture for smooth projective varieties
admitting a big complex local system. Moreover, we address a more general conjecture by
Campana and Claudon concerning the deformation invariance of the Γ-dimension of projective
varieties.

As an application, we establish the deformation openness of pseudo-Brody hyperbolicity for
projective varieties endowed with a big and semisimple complex local system.

To achieve these results, we develop the deformation regularity of equivariant pluriharmonic
maps into Euclidean buildings and Riemannian symmetric spaces in families, along with
techniques from the reductive and linear Shafarevich conjectures.
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1. Introduction

In [Sha77], Shafarevich conjectured that the universal cover of a smooth complex projective
variety - is holomorphically convex. If true, this conjecture implies the existence of a proper
holomorphic fibration sh- : - → Sh(-) (referred to as the Shafarevich morphism), which
contracts to a point precisely those closed subvarieties / for which Im[c1(/) → c1(-)]
is finite. In [Kol93, Cam94], Campana and Kollár independently established the existence
of such a map, up to birational equivalence (so-called Γ-reduction or Shafarevich map, cf.
Theorem 1.2 below). In [Eys04, EKPR12], Eyssidieux, Katzarkov, Pantev and Ramachandran
proved the Shafarevich conjecture for smooth projective varieties with linear fundamental
groups. Recall that a finitely generated group Γ is called linear (resp. reductive) if there exists
an almost faithful (i.e. with finite kernel) linear (resp. reductive) representation Γ→ GL# (C).
For more recent progress on the Shafarevich conjecture, see [DYK23].

In [Kol95, §18.4], Kollár asked the question of how Shafarevichmaps for complex projective
varieties vary in families. Precise conjectures were later proposed by de Oliveira, Katzarkov,
and Ramachandran [dOKR02], as well as by Campana and Claudon [Cla10]. This paper
aims to explore these conjectures, offering some applications to the hyperbolicity of algebraic
varieties.

1.1. Deformation of varieties with big fundamental groups. Let - be a compact Kähler
manifold - . We say - has big (or generically large in [Kol95]) fundamental group if for any
positive-dimensional irreducible subvariety / of - passing through a very general point, the
image Im[c1(/) → c1(-)] is an infinite group. Similarly, a representation r : c1(-) →
GL# (C) is called big if for any positive-dimensional irreducible subvariety / of - passing
through a very general point, the image r(Im[c1(/) → c1(-)]) is an infinite group.

As seen in the above definition, we emphasize that throughout this paper, when discussing
properties of the fundamental group c1(-) of a compact Kähler manifold - , or representations
c1(-) → GL# (C), we are not solely referring to the abstract group structure of c1(-). Instead,
we also take into account the structure inherently tied to the complex structure of - itself.
In [dOKR02, Conjecture 1.1], de Oliveira, Katzarkov, and Ramachandran proposed the

following intriguing conjecture.
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Conjecture 1.1 ([dOKR02]). Let 5 : � → D be a smooth projective family of varieties over
the unit disk D. For each C ∈ D, let -C := 5 −1(C) denote the fiber over C. If -0 has big
fundamental group, then -C also has big fundamental group for sufficiently small C ∈ D.

Conjecture 1.1 as stated here is more general than in [dOKR02, Conjecture 1.1], as we do not
assume the existence of a linear representation of c1(-0) with infinite image. This conjecture
was proved by Claudon for the case dim -0 = 2 (cf. [Cla10, Corollaire 1.1]). Furthermore,
he established Conjecture 1.1 for dim -0 = 3 (cf. [Cla10, Théorème 0.4]), contingent upon a
conjecture regarding the virtual abelianity of the fundamental groups of special Kähler orbifold
surfaces (cf. [Cla10, Conjecture 3]). However, beyond these works, there has been no progress
on this conjecture in higher-dimensional cases.

In this paper, we prove the following theorem.

Theorem A (=Theorem 7.16.(ii)). Conjecture 1.1 holds if there exists a big representation
r : c1(-0) → GL# (C). In particular, it holds if c1(-0) is linear.

1.2. Γ-dimension under deformation. In [Cam94], Campana introduced the notion of the
Γ-dimension (distinct from the VonNeumann dimension in [Ati76]!), based on his construction
of the Γ-reduction. This construction was also obtained independently by Kollár for algebraic
varieties [Kol93] under the name Shafarevich map.

Theorem 1.2 ([Cam94, Kol93]). Let - be a compact Kähler manifold and let � ⊳ c1(-) be a
normal subgroup. Then there exists proper surjective, almost holomorphic map W(-,�) : - d
Γ� (-) with connected fibers such that for any closed positive-dimensional subvariety / ⊂ -
passing through a very general point of - , W(-,�) (/) is a point if and only if Im[c1(/) →
c1(-)/�] is finite. Such a map is unique up to bimeromorphic equivalence. �

Here, an almost holomorphic map refers to a meromorphic map whose indeterminacy locus
does not dominate its image. When � is a finite subgroup, one can verify that W(-,�) is
bimeromorphic to W(-,{4}) , and in this case we simply write W- : - d Γ(-) for W(-,�) : - d
Γ� (-), and call it the Γ-reduction of - .

The following definition is introduced in [Cam94, Définition 4.1].

Definition 1.3 (Γ-reduction, Γ-dimension). Let - be a compact Kähler manifold and let
� ⊳ c1(-) be a normal subgroup. The almost holomorphic map W(-,�) : - d Γ� (-) in
Theorem 1.2 is called the Γ-reduction or Shafarevich map of (-, �). The Γ-dimension of
(-, �), denoted by W3 (-, �), is dimΓ� (-).

Remark 1.4. The Γ-dimension, roughly speaking, measures the positivity of the fundamental
group of a compact Kähler manifold. By Theorem 1.2, it can be viewed as an analogue of
the Kodaira dimension of canonical bundles for the fundamental groups of compact Kähler
manifolds, with the Γ-reduction playing a role similar to the Iitaka fibration. In two extreme
cases, - has big (resp. finite) fundamental group if and only if W3 (-) = dim - (resp.
W3 (-) = 0). In [Cla10], varieties with big fundamental groups are also referred to as being
of c1-general type, analogous to the concept of maximal Kodaira dimension. In [Cam95],
Campana established an upper bound for W3 (-) in terms of an algebraic-geometric invariant
^+(-), which is determined by the positivity properties of Ω?

-
for any ? > 0.
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As an analogue to the invariance of plurigenera proved by Siu [Siu98, Siu02] (cf. also
[Pău07]), Campana and Claudon proposed the following conjecture, which is considerably
more general than Conjecture 1.1.

Conjecture 1.5 ([Cla10, Conjecture 2]). Let 5 : � → D be a smooth proper Kähler family.
Then C ↦→ W3 (-C) is a continuous (hence constant) function on D.

Here we say 5 : � → D is a smooth proper Kähler family if � is a Kähler manifold and 5
is a holomorphic proper submersion with connected fibers.

In [Cla10], Claudon proved Conjecture 1.5 when dim -0 = 2, and in the case where
dim -0 = 3 and ^(-0) ≤ 2.

We prove Conjecture 1.5 for Kähler varieties with rigid and integral fundamental groups.

Theorem B (=Theorem 3.7). Let 5 : � → D be a proper smooth Kähler family. If there
exists an almost faithful reductive representation r : c1(-0) → GL# (C), which is rigid and
integral, then C ↦→ W3 (-C) is constant on D.

Remark 1.6. By a deep theorem of Esnault and Groechenig [EG18], any cohomologically rigid
local system on a smooth projective variety is integral. Consequently, Theorem B also holds
if -0 is a smooth projective variety and r : c1(-0) → GL# (C) is assumed to be only almost
faithful and cohomologically rigid.

We also prove the lower semi-continuity forΓ-dimension of varieties with linear fundamental
groups, which includes Theorem A as a special case.

Theorem C (=Theorems 7.16.(i) and 5.6). Let 5 : � → D be a smooth projective family.
(i) Let "C := "B(c1(-C),GL# ) (C) denote the Betti moduli space of c1(-C). Define �C ⊳

c1(-C) as the intersection of the kernels of all reductive representations r : c1(-C) →
GL# (C). Then the function C ↦→ W3 (-C , �C) on D is lower semicontinuous.

(ii) If c1(-0) is linear, then C ↦→ W3 (-C) is also a lower semicontinuous function on D.

To prove Theorems A to C, we establish the deformation regularity of equivariant harmonic
maps to Euclidean buildings or symmetric spaces in families (see Theorems 2.5, 4.29, 5.4
and 7.7). We then apply these results, together with techniques in [Eys04, EKPR12, DYK23]
on the Shafarevich conjecture to prove Theorems A to C.

1.3. Applications to hyperbolicity. We give an application of Theorem C.(i) to the hyper-
bolicity of algebraic varieties under deformation. First, we first recall the following definition
of hyperbolicity (see [Dem20, CDY22] for related results and other notions of hyperbolicity).

Definition 1.7 (PseudoBrody hyperbolicity). Acompact complexmanifold - is called pseudo-
Brody hyperbolic if there is a proper Zariski closed subset / ( - such that any non-constant
holomorphic map 5 : C→ - has image in / . If / = ∅, - is simply called Brody hyperbolic.

Recall the following classical result on the openness of Brody hyperbolicity (see e.g.
[Dem20, Proposition 1.10]).

Theorem 1.8. Let 5 : � → D be a holomorphic proper submersion from a complex manifold
� to the unit disk with connected fibers. If -0 is Brody hyperbolic, then there exists Y > 0
such that -C is Brody hyperbolic for |C | < Y.
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There has long been a folklore conjecture that such openness properties hold for pseudo-
Brody hyperbolicity.

Conjecture 1.9. Let 5 : � → D be as in Theorem 1.8. If -0 is pseudo-Brody hyperbolic, then
-C is also pseudo Brody hyperbolic for sufficiently small C.

This conjecture is indeed a consequence of the following generalized Green-Griffiths-Lang
conjecture.

Conjecture 1.10 (Generalized GGL conjecture). Let - be a smooth projective variety. Then
- is pseudo-Brody hyperbolic if and only if it is of general type.

Let us explain how to prove Conjecture 1.9 assuming Conjecture 1.10. If -0 is pseudo-Brody
hyperbolic, then -0 is of general type by Conjecture 1.10. By the invariance of plurigenera,
-C is of general type for any C ∈ D. By Conjecture 1.10 again, -C is pseudo-Brody hyperbolic.
This proves Conjecture 1.9.

In [CDY22, Theorem C], we prove Conjecture 1.10 if there exists a big and reductive
representation c1(-) → GL# (C). We will apply Theorem C.(i) together with [CDY22,
Theorem C] and [DYK23] to prove the following result on Conjecture 1.9.

Theorem D (=Theorem 6.1). Let 5 : � → D be a smooth projective family. Assume that
there is a big and reductive representation r : c1(-0) → GL# (C). If -0 is pseudo-Brody
hyperbolic, then there exists Y > 0 such that -C is also pseudo-Brody hyperbolic for sufficiently
small C.

As a consequence, we prove the following result.

Corollary E. Let - be a smooth projective variety. Assume that either
(a) there is a complex variation of Hodge structure (C-VHS for short) r : c1(-) → GL# (C)

with discrete monodromy Γ such that the period map - → �/Γ is generically finite onto
the image, or

(b) there is a big representation g : c1(-) → GL# (C) such that the Zariski closure of
g(c1(-)) is a semisimple algebraic group.

Then every small projective deformation of - is pseudo-Brody hyperbolic.

Remark 1.11. The hyperbolicity results stated in this subsection also hold if we replace pseudo-
Brody hyperbolicity with the stronger notion, known as pseudo-Picard hyperbolicity, intro-
duced in [Den23, CDY22]. To lighten the notion, we consider only pseudo-Brody hyperbolicity
in this paper, and interested readers can refer to [CDY22] for other notions of hyperbolicity.

1.4. Notation and Convention.
(a) Throughout this paper, c1(-) always refers to the topological fundamental group of the

variety - .
(b) For a complex space - , we denote by - reg the regular locus of - .
(c) Unless otherwise specified, all projective varieties are assumed to be defined over the field

of complex numbers.
(d) Denote by D the unit disk in C, and by D∗ the punctured unit disk. We write DY := {I ∈

C | |I | < Y}, D∗Y := {I ∈ C | 0 < |I | < A}.
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(e) A smooth projective family 5 : � → D is a smooth projective morphism from � to D
with connected fibers. A smooth proper Kähler family 5 : � → D is a holomorphic
proper submersion from a Kähler manifold� to D with connected fibers. For any C ∈ D,
let -C := 5 −1(C) denote the fiber of 5 over C. For notational simplicity, we often write -
instead of -0. Denote by c� : �̃ → � the universal covering map.

(f) Let 5 : � → D be as above, and let r : c1(-0) → GL# ( ) be a representation, where
 is any field. We denote by rC : c1(-C) → GL# ( ) the representation induced by the
composition of r with the natural isomorphism c1(-C) → c1(-0) induced by 5 .

(g) Let Ω ⊂ C= be an open domain endowed with a Riemannian metric 6, and let I ∈ Ω be
any point. We denote by BA (I) the Euclidean ball of radius A in Ω centered at I, and by
�A (I) the ball of radius A in Ω centered at I with respect to the Riemannian metric 6.

(h) Let � be a reductive group defined over a non-archimedean local field  . We denote
by Δ(�) the Bruhat-Tits building of �, which is a non-positively curved (NPC) space.
Denote by 3 (•, •) the distance function on Δ(�) . Let �� denote the derived group of
�, which is semisimple.

(i) A linear representation r : c1(-) → GL# ( ), where  is a field, is called reductive if
the Zariski closure of r(c1(-)) is a reductive algebraic group over  .

Acknowledgment. We would like to thank Frédéric Campana, Benoît Claudon, Philippe
Eyssidieux, Claire Voisin for helpful discussion. The first author is supported in part by
ANR-21-CE40-0010. The second author is supported in part by NSF DMS-2304697. Part of
this research was performed while the second author was visiting the Mathematical Sciences
Research Institute (MSRI), now becoming the Simons Laufer Mathematical Sciences Institute
(SLMath), which is supported by the National Science Foundation (Grant No. DMS-1928930).

2. Deformation of harmonic bundles

The aim of this section is to prove Theorem 2.5, which was used in the proofs of Theorem B
and Theorem C.

2.1. Some preliminary onHiggs bundle and harmonic bundle. Wefirst recall the definition
of Higgs bundles and harmonic bundles. We refer the readers to [Cor88, Sim88, Sim92] for
further details.
Definition 2.1. Let - be a complex manifold. A Higgs bundle on - consists of (�, m̄� , \)
where � is a holomorphic vector bundle with m̄� its complex structure, and \ : � → � ⊗ Ω1

-

is a holomorphic one form with value in End(�), say Higgs field, satisfying \ ∧ \ = 0. We
will usually write (�, \) instead of (�, m̄� , \) if no confusion arises.

Let (�, \) be a Higgs bundle over a complex manifold - . Suppose ℎ is a smooth hermitian
metric of � . Denote by ∇ℎ the Chern connection with respect to ℎ, and by \∗

ℎ
the adjoint of \

with respect to ℎ. The metric ℎ is harmonic if the operator �ℎ := ∇ℎ + \ + \∗ℎ is integrable,
that is, if �2

ℎ
= 0. We write \∗ instead of \∗

ℎ
to simply the notation if no confusion arises.

Definition 2.2 (Harmonic bundle). A harmonic bundle on a complex manifold - is a Higgs
bundle (�, \) endowed with a harmonic metric ℎ.
Definition 2.3. For a harmonic bundle (�, \, ℎ) on a complex manifold - , its canonical form
is a semi-positive closed (1, 1)-form on - defined by

√
−1tr(\ ∧ \∗).
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Let (-, l) be a compact Kähler manifold. Assume that r : c1(-) → GL# (C) is a reductive
representation. Let (+r, �) be the flat bundle on - with the monodromy representation being
r. Let ℎ be any smooth hermitian metric for +r. Then there exists a unique decomposition
� = ∇ℎ +Φℎ such that ∇ℎ is a unitary connection of (+r, ℎ) and Φℎ is a self-adjoint operator,
namely, we have

〈Φℎ (4), 4′〉ℎ = 〈4,Φℎ (4′)〉ℎ, ∀ 4, 4′ ∈ +r .
Say ℎ is a harmonic metric if ∇∗

ℎ
Φℎ = 0. In this case, by the Siu-Sampson formula, we have the

pluriharmonicity of ℎ. In otherwords, if we decompose∇ℎ = ∇′ℎ+∇
′′
ℎ
andΦℎ = Φ

′
ℎ
+Φ′′

ℎ
into the

(1, 0) and (0, 1)-parts, then (+r,∇′′ℎ ,Φ
′
ℎ
, ℎ) is a harmonic bundle. By the theorem of Corlette

[Cor88], such harmonic metric exists and is unique up to some obvious ambiguity. Wewill also
refer to (+r, �, ℎ) as a harmonic bundle if no confusion arises. In this case, the canonical form
associated with the harmonic bundle (+r, �′′ℎ ,Φ

′
ℎ
, ℎ) introduced in Definition 2.3 is uniquely

defined, and we denote it by lr :=
√
−1tr(Φ′

ℎ
∧ Φ′′

ℎ
). Note that it does not depend on the

choice of the Kähler metric l on - .

Definition 2.4 (Canonical form). We call the above semi-positive closed (1, 1)-form lr the
canonical form associated with the reductive representation r : c1(-) → GL# (C).

We leave it to the reader to verify as an exercise that for any 6 ∈ GL# (C), we have
lr = l6r6−1 , where 6r6−1 is the conjugate of r by 6.

2.2. Deformation of canonical forms. Let us prove the main result of this section on the
continuity of canonical forms in families.

Theorem 2.5. Let 5 : � → D be a proper smooth Kähler family. Let r : c1(-) → GL# (C)
be a reductive representation. Then the fiberwise defined canonical form lrC on -C associated
with the representation rC : c1(-C) → GL# (C) varies continuously with respect to C ∈ D.

The proof of Theorem 2.5 follows essentially from the same arguments in [Sim92, Sim94b],
based on Uhlenbeck’s weak compactness theorem [Uhl82]. We first recall some preliminary
results.

Let 6 denote the Euclidean metric
∑
3I8 · 3Ī8 of D=. Let l be a Kahler form on D= such

that there exists a constant �0 > 0 such that �−1
0 ·l ≤ 6 ≤ �0 ·l. Let (�, \, ℎ) be a harmonic

bundle on D=. We have the expression \ =
∑=
8=1 58 · 3I8 for holomorphic sections 58 ∈ End(�)

on D=. Recall the following result in [Moc06].

Lemma 2.6 ([Moc06, Lemma 2.13]). There exist a constant �1 depending only on rank � , the
upper bound of absolute values of eigenvalues of 51, . . . , 5= and the above constant �0, such
that

|\ |2l,ℎ (G) ≤ �1, ∀G ∈ D=1
2
.

Here |\ |l,ℎ denotes the norm of \ with respect the metric ℎ and l. �

Lemma 2.7. There exists a constant �2 depending only on rank � and �0 such that absolute
values of eigenvalues of 51(G), . . . , 5= (G) for each G ∈ D=1

2
are bounded from above by�2‖\‖2l,ℎ,

where
‖\‖2l,ℎ :=

∫
D=
|\ |2l,ℎ3Voll.
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Proof. Consider the characteristic polynomial %8 := det(C− 58) = CA +f8,1CA−1+· · ·+f8,A , where
A = rank � and f8, 9 are holomorphic functions on D=. For any G ∈ D=, we denote by _8 (G)
the maximum of the absolute values of eigenvalues of 58 (G). Then by the classical inequalities
between the norms of roots and coefficients of a polynomial, one has

_8 (G) ≤ 2 max
:=1,...,A

|f8,: (G) |
1
: .

Note that there exists a constant �3 depending only on rank � such that

B(G) := max
:=1,...,A

|f8,: (G) |
2
: ≤ �3 | 58 (G) |2ℎ.

For each I ∈ D=1
2
, we set

ΩI := {F ∈ D= | |F8 − I8 | ≤
1
2
for each 8}.

Since B(G) is a psh function, we have

log |B(I) |2 6 4=

c=

∫
ΩI

log |B(F) |23vol6

6 log
( 4=

c=
·
∫
ΩI

|B(F) |23vol6
)

≤ log( 4
=

c=
) + log

∫
D=
|B(F) |23vol6

≤ log�3(
4=

c=
) + log

∫
D=
| 58 |2ℎ3vol6 .

On the other hand, note that there exists a constant �4 depending only on �0 such that

max
8=1,...,=

∫
D=
| 58 |2ℎ3vol6 ≤ �4

∫
D=
|\ |2l,ℎ3voll = �4‖\‖2l,ℎ.

The above two inequalities yield the lemma. �

Lemmas 2.6 and 2.7 imply the following result.

Lemma 2.8. There exists a uniform constant � depending only on rank � , the constant �0
above, and the !2-norm ‖\‖2

l,ℎ
such that

|\ |2l,ℎ (G) ≤ �, ∀G ∈ D=1
2
.

�

Proof of Theorem 2.5. It suffices to prove the continuity of lrC at C = 0. Write - for -0 for
notational simplicity. We fix a smooth trivialization � : � → - × D and let �C : -C → - be
the induced diffeomorphism. To prove the theorem, it is equivalent to show that �C,∗lrC are
continuously varying forms on - at C = 0.

Fix a Kähler metric 6 on - and let 6C := 6 |-C be the induced Kähler metric on -C . Let (+r, �)
be the flat vector bundle on � whose monodromy representation is r. By Corlette’s theorem,
for each C ∈ D, there exists a harmonic metric ℎC for (+C , �C) := (+r, �) |-C . Let (�C , \C , ℎC)
be the corresponding harmonic bundle on -C . By the same arguments as we will see in (4.9),
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the energy of the rC-equivariant harmonic map from -̃C to GL#/*# induced (�C , \C , ℎC) is a
continuous function on D. Hence, there exists a constant �1 > 0 such that the energy∫

-C

|\C + \∗C |26C ,ℎC 3Vol6C ≤ �1

for any C ∈ D 1
2
. This implies that

‖\C ‖26C ,ℎC ≤ �1 for any C ∈ D 1
2
. (2.1)

We can find a constant Y ∈ (0, 1
2 ) and admisisble coordinate systems {Ω1, . . . ,Ω<} centered

at points in -0 such that the following properties hold:
(a) there are biholomorphisms i8 : D= × DY → Ω8 with 5 ◦ i8 (I, C) = C.
(b) Set Ω8 ( 12 ) := i8 (D=1

2
× DY). Then ∪<8=1Ω8 (

1
2 ) = 5 −1(DY).

(c) There exists a constant �0 > 0 such that for the Euclidean metric 6 =
∑
3I8 · 3Ī8 of D=,

for each C ∈ DY, we have
�−1

0 i∗8 6C ≤ 6 ≤ �0i
∗
8 6C .

By Lemma 2.8 and (2.1), this implies that there exists a uniform constant � > 0 such that for
any C ∈ D 1

2
and any G ∈ -C , we have

|\C (G) |26C ,ℎC ≤ �. (2.2)

Let �2 be a constant such that �−1
2 �∗C 60 ≤ 6C ≤ �2�

∗
C 60 for each C ∈ DY. Then we have the

uniform bound for the Chern curvature of (�C , ℎC) with respect to the metric �∗C 60 as follows:

|'(�C , ℎC) (G) |�∗C 60,ℎC ≤ �2 |'(�C , ℎC) (G) |6C ,ℎC = �2 | [\C , \∗C ] (G) |6C ,ℎC ≤ 2�2�2. (2.3)

Pick {C8}8∈N be an arbitrary sequence of points in DY that converge to 0. To simplify notation,
let �8 : -8 → - be �C8 : -C8 → - and (�8, \8, ℎ8) be (�C8 , \C8 , ℎC8 ). Using (2.3), we can apply
Uhlenbeck’s weak compactness theorem [Uhl82], following the approach outlined in [Sim94b,
§7].

Fix some large positive integer ?. By [Sim94b, Proposition 7.9], after subtracting a sub-
sequence, there exists a harmonic bundle (�, \, ℎ) on - together with a sequence of !?2 -
isometries (i.e. gauge transform in [Uhl82]) [8 : �8,∗(�8, ℎ8)

'→ (�, ℎ) such that [8,∗�8,∗(\8) −\,
[8,∗�8,∗(\∗8 ) − \∗, and [8,∗�8,∗(�8) − � converges to zero strongly in �0. Here �8 (resp. �) is
flat connection associated with the harmonic bundle (�8, \8, ℎ8) (resp. (�, \, ℎ)).

Note that the monodromy representation g8 : c1(-) → GL# (C) of the flat bundle

([8,∗�8,∗(�8), [8,∗�8,∗(�8))

is conjugate to that of �8. Hence there exists an element 68 ∈ GL# (C) such that g8 = 68 r6−1
8
.

Hence we have [g8] = [r] in"B(c1(-),GL# ) (C). Let g be the the monodromy representation
of �. Since [8,∗�8,∗(�8) − � converges to zero strongly in �0, it follows that lim

8→∞
[g8] = [g].

Hence g is conjugate to r. One thus has

lr =
√
−1tr(\0 ∧ \∗0) =

√
−1tr(\ ∧ \∗) = lg . (2.4)
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Note that

�8,∗(lrC8 ) = �8,∗
(√
−1tr(\8 ∧ \∗8 )

)
=
√
−1tr

(
�8,∗(\8) ∧ �8,∗(\∗8 )

)
=
√
−1tr

(
[8,∗�8,∗(\8) ∧ [8,∗�8,∗(\∗8 )

)
. (2.5)

Since [8,∗�8,∗(\8) − \ and [8,∗�8,∗(\∗8 ) − \∗ converges to zero strongly in �0,
√
−1tr

(
[8,∗�8,∗(\8) ∧ [8,∗�8,∗(\∗8 )

)
converges to

√
−1tr(\ ∧ \∗) strongly in �0. (2.4) and (2.5) imply that �8,∗(lrC8 ) converges to

lr strongly in �0. As {C8} is any sequence in D 1
2
converging to 0, this implies the continuity

of lrC at -0. The theorem is proved. �

Remark 2.9. Later, in Theorem7.7, wewill establish a regularity result for equivariant harmonic
maps into symmetric spaces in families. This result enables us to strengthen Theorem 2.5,
showing that lrC varies smoothly with respect to C, although this is not required for the proofs
of Theorems B and C. See Remark 7.8.

3. Γ-dimension and rigid and integral fundamental groups

In this section we will prove Theorem B, utilizing Theorem 2.5.

3.1. Some preliminary forC-VHS andGriffiths bundle. We recall some notions of complex
variation of Hodge structures (C-VHS for short). We refer the readers to [Gri70, Sch73, Sim88,
CMSP17, SS22] for more details.

Let - be a compact Kähler manifold and let g : c1(-) → GL# (C) be a reductive repre-
sentation underlying a C-VHS of weight F. By [Sim88], it corresponds to a system of Hodge
bundles (� = ⊕?+@=F� ?,@, \) endowed with a Hodge metric ℎ induced by g. Precisely, we
have
(1) (�, \, ℎ) is a harmonic bundle on - .
(2) The decomposition � = ⊕?+@=F� ?,@ is orthogonal with respect to ℎ.
(3) We have

\ : � ?,@ → � ?−1,@+1 ⊗ Ω-
(4) The connection ∇ℎ + \ + \∗ is flat, whose monodromy representation is g.
In Griffiths [Gri70] (cf. also [CMSP17, Problem 13.3.3]), Griffiths introduced a line bundle
on - (so-called Griffiths line bundle) defined by

!g := (det �F,0)F ⊗ (det �F−1,1)F−1 ⊗ · · · ⊗ (det �1,F−1)

endowed with the metric 6 induced by ℎ.
We denote by \?,@ := \ |� ?,@ , and ℎ?,@ := ℎ|� ?,@ . Then the Chern curvature of (� ?,@, ℎ?,@) is

given by
'?,@ := −\∗?,@ ∧ \?,@ − \?+1,@−1 ∧ \∗?+1,@−1.
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Therefore, the Chern curvature of (!g, 6) is

'(!g, 6) = Ftr(−\∗F,0 ∧ \F,0) +
F−1∑
?=1
(F − @)tr(−\∗F−@,@ ∧ \F−@,@ − \F−@+1,@−1 ∧ \∗F−@+1,@−1)

=

F−1∑
@=0

tr(−\∗F−@,@ ∧ \F−@,@)

=

F−1∑
@=0

tr(\F−@,@ ∧ \∗F−@,@)

= tr(\ ∧ \∗).
This implies the following result, which is already well-known to experts:

Lemma 3.1. We have the integrality of the cohomology class

{ 1
2c
lg} = {

√
−1

2c
tr(\ ∧ \∗)} = 21(!g) ∈ �2(-,Z).

Let � be the period domain of the C-VHS g and let Γ be the monodromy group g(c1(-)).
Assume that Γ acts discretely on�. Then the quotient�/Γ is a complex space and the period
map is a holomorphic map ? : - → �/Γ, whose differential is \.

Lemma 3.2. Let g : c1(-) → GL# (C) be a C-VHS with discrete monodromy. Let l be a
Kähler form on a compact Kähler =-fold - . Let :0 be the largest integer : such that∫

-

(
√
−1tr(\ ∧ \∗)): ∧ l=−: > 0.

Then :0 is the dimension of the image ?(-).

Proof. Since \ is the differential of ?, it follows that \ |/ is trivial for any fiber / of ?. Hence,√
−1tr(\ ∧ \∗) |/ is also trivial. On the other hand, for any b ∈ )- such that 3?(b) ≠ 0,

we have tr(\ ∧ \∗) (b, b̄) = |\ (b) |ℎ > 0. Let -◦ be a Zariski dense open subset of ? such
that ? |-◦ is a proper submersion. This implies that, at each point G ∈ -◦, the semi-positive
(1, 1)-form

√
−1tr(\ ∧ \∗) has exactly dim ?(-) strictly positive eigenvalues. Therefore,

(
√
−1tr(\ ∧ \∗)): ∧ l=−: is a positive measure on -◦ for : = dim ?(-), and is trivial for

: > dim ?(-) on -◦. The lemma is proved. �

3.2. Notion of Shafarevichmorphism. Let us give the definition of the Shafarevichmorphism
(cf. [Eys04, Eys11, DYK23]).

Definition 3.3 (Shafarevichmorphism). Let - be a compact Kähler manifold, and let�⊳c1(-)
be a normal subgroup. A proper holomorphic fibration sh� : - → Sh� (-) onto a complex
normal variety Sh� (-) is called the Shafarevich morphism associated with (-, �) if, for any
closed subvariety / of - , sh� (/) is a point if and only if the image

Im[c1(/) → c1(-)/�]
is finite. We shall write sh- : - → Sh(-) for the Shafarevich morphism associated with
(-, {4}), and refer to it as the Shafarevich morphism of - .
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Let " be a subset of the Betti moduli space "B(c1(-),GL# ) (C) (cf. [Sim94a] for the
definition). Let � =

⋂
g ker g, where g ranges over all reductive representations g : c1(-) →

GL# (C) with [g] ∈ " . If the Shafarevich morphism sh� : - → Sh� (-) exists, then we shall
write

sh" : - → Sh" (-)
in place of sh� : - → Sh� (-), and call it the Shafarevich morphism associated with " .

In [Eys04] (cf. [DYK23, Proposition 3.37] for the singular case), it is shown that when -
is projective and " := "B(c1(-),GL# ) (C), the Shafarevich morphism associated with "
exists and is algebraic.

Lemma 3.4. Let - be a smooth projective variety. Set " := "B(c1(-),GL# ) (C). If there
exists an almost faithful reductive representation r : c1(-) → GL# (C), then the Shafarevich
morphism sh" : - → Sh" (-) associated with " is the Shafarevich morphism of - .

Proof. Since r : c1(-) → GL# (C) is almost faithful, then for any closed subvariety / of - ,
r(Im[c1(/) → c1(-)]) is finite if and only if Im[c1(/) → c1(-)] is finite. The lemma
follows from Definition 3.3. �

Remark 3.5. Let � ⊳ c1(-) be a normal subgroup. Note that the Shafarevich morphism
sh� : - → Sh� (-) associated with (-, �), if exists, is bimemorphic to the Γ-reduction of
(-, �). Hence, we have dim Sh� (-) = W3 (-, �).
The next result is well-known, and we provide a proof for the sake of completeness.

Lemma 3.6. Let g be a C-VHS on a compact Kähler manifold - with discrete monodromy
Γ. The Stein factorization 6 : - → . of its period map ? : - → �/Γ is the Shafarevich
morphism associated with g.

Proof. Let / be a connected component of any fiber of 6. Recall that (cf. [CMSP17]), there
exists a real semisimple algebraic group � ⊂ GL# such that � (R) acts transitively on�. For
any point % ∈ �, the stabilizer of % under the action of� (R) is a compact subgroup of� (R).
Moreover, we have g(c1(-)) ⊂ � (R). Then g(Im[c1(/) → c1(-)]) is contained in some
conjugate  ′ of  . Since Γ is discrete,  ′∩Γ is finite. Thus, g(Im[c1(/) → c1(-)]) ⊂  ′∩Γ
is finite.

Now, let / be a closed subvariety of - such that g(Im[c1(/) → c1(-)]) is finite. Then, for
some finite étale cover /′ of / , g(Im[c1(/′) → c1(-)]) is trivial. By the rigidity of VHS (cf.
[Sch73, Proposition 7.24]), the pullback of the C-VHS underlying g on the desingularization
of /′ is thus trivial. Hence, the composite map /′→ /

?
→ �/Γ is trivial. This completes the

proof of the lemma. �

3.3. Proof of Theorem B. In this subsection, we will prove Theorem B.

Theorem 3.7 (=Theorem B). Let 5 : � → D be a proper smooth Kähler family. If there
exists a faithful reductive representation r : c1(-0) → GL# (C), which is rigid and integral,
then C ↦→ W3 (-C) is constant on D.
Proof. By the integrality and rigidity of r, after replacing r by some conjugate, there exists a
number field ! such that we have

r : c1(-0) → GL# ($!).
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Hence we have
rC : c1(-C) → GL# ($!)

for each C ∈ D by the definition of rC .
Let Ar(!) be the set of archimedean places of !, consisting of all embedding f : ! → C.

Then the direct sum
⊕f∈Ar(!)frC : c1(-C) → ⊕GL# (C)

has discrete image for each C ∈ D. Let gC : c1(-C) → GL" (C) be ⊕f∈Ar(!)frC .
Since the rigidity of r implies the rigidity of rC , as we have the natural isomorphism

between"B(c1(-C),GL# ) and"B(c1(-0),GL# ), by [Sim92], for any embeddingf ∈ Ar(!),
frC : c1(-C) → GL# (C) corresponds to a C-VHS on -C . Hence, gC underlies a C-VHS with
discrete monodromy. We stress here that the period domains of these C-VHS gC might vary in
C.

Let lgC be the canonical form on -C associated with gC defined in Definition 2.4. By
Theorem 2.5, the cohomology classes {lgC }C∈D vary continuously in �2(�,R) ' �2(-C ,R)
with respect to C.

On the other hand, by Lemma 3.1, 1
2clgC ∈ �

2(-C ,Z) for each C. Therefore, the section(
C ↦→ {lgC }

)
∈ Γ(D, '2 5∗(R)) is flat with respect to the Gauss-Manin connection.

Let l be a Kähler form on � which gives the polarization. Denote by lC = l |-C . Then
the smooth section (C ↦→ {lC}) ∈ Γ(D, '2 5∗(R)) is also flat with respect to the Gauss-Manin
connection of the local system '2 5∗(R). It follows that for each : ∈ N,

ℎ: : D→ N

C ↦→
∫
-C

(lgC ): ∧ (lC)=−:

is a constant function on D, where = denotes the relative dimension of 5 . Set
:0 = max

:
{ℎ: ≠ 0}.

Since gC has discrete image, its image ΓC := gC (c1(-C)) acts discretely on �C , and thus
�C/ΓC is a complex space. Denote by ?C : -C → �C/ΓC the corresponding period map of
gC . By Lemma 3.2, :0 is the dimension of the image ?C (-C). By Lemma 3.6, we have
dim ShgC (-C) = :0 for each C ∈ D, where shgC : -C → ShgC (-C) is the Shafarevich morphism
of gC . Since rC is assumed to be almost faithful, it follows that ker gC is a finite subgroup of
c1(-C). This implies that shgC is the Shafarevich morphism of -C . Hence W3 (-C) = :0 for any
C ∈ D. The theorem is proved. �

4. Deformation of harmonic maps into Euclidean buildings

To prove Theorems A and C, we need to apply techniques used in studying the reductive
Shafarevich conjecture (see [Eys04, DYK23]). This involves considering local systems over
non-archimedean local fields on projective varieties. In this context, we apply tools developed
by Gromov and Schoen [GS92] regarding the existence of equivariant harmonic maps to
Bruhat-Tits buildings. In this section, we will explore the deformation of these harmonic maps
in families (see Theorem 2.5). Analogous to the canonical form introduced in Definition 2.4,
there is a notion of canonical currents (see Definition 5.1) associated with representations of
fundamental groups into algebraic groups over non-archimedean local fields. Our ultimate
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goal is to apply Theorem 4.29 to establish a result similar to Theorem 2.5 concerning the
deformation of canonical currents (see Theorem 5.4).

4.1. NPC spaces. For the definitions in this subsection, we refer the readers to [BH99, Rou09,
KP23].

Definition 4.1 (Geodesic space). Let (-, 3-) be a metric space. A curve W : [0, ℓ] → - into
- is called a geodesic if the length 3- (W(0), W(1)) = 1 − 0 for any subinterval [0, 1] ⊂ [0, ℓ].
A metric space (-, 3-) is a geodesic space if there exists a geodesic connecting every pair of
points in - .

Definition 4.2 (NPC space). An NPC (non-positively curved) space (N , 3N ) is a complete
geodesic space that satisfies the following condition: for any three points %,&, ' ∈ N and a
geodesic W : [0, ℓ] → N with W(0) = & and W(ℓ) = ', we have

32(%,&C) ≤ (1 − C)32(%,&) + C32(%, ') − C (1 − C)32(&, ')
for any C ∈ [0, 1], where &C := W(Cℓ).
An NPC space generalizes a Hadamard manifold, which is a complete, simply connected

Riemannian manifold with non-positive sectional curvature. A relevant example of an NPC
space that is not a Riemannian manifold, pertinent to this paper, is the Bruhat-Tits building
Δ(�) associated with a reductive algebraic group � defined over a non-archimedean local
field  . While we do not provide the full definition of Bruhat-Tits buildings here, readers
can refer to sources such as [Rou09] and [KP23] for precise details. Notably, a Bruhat-Tits
building consists of a collection of apartments, each of which is an isometric and totally
geodesic embedding of Euclidean space R# , where # = dim(Δ(�) ). Additionally, the group
� ( ), which denotes the  -points of�, acts isometrically on Δ(�) and transitively on its set
of apartments. The dimension of Δ(�) equals the  -rank of the algebraic group �, which is
the dimension of a maximal  -split torus in �.

In this paper, we mainly work on two types of NPC spaces:
(1) The Riemannian symmetric spaces GL# (C)/U# and SL# (C)/SU# .
(2) The Bruhat-Tits buildingΔ(�) of a reductive algebraic group� over a non-archimedean

local field  .

4.2. Some preliminary of harmonic maps to NPC spaces. For further details of definitions
and results in this subsection, we refer the readers to [GS92, KS93, KS97], [BDDM22, §2.2]
and [DM24, §4].

Consider a map 5 : Ω→ N from an =-dimensional Riemannian manifold (Ω, 6) to an NPC
space (N , 3N ). When the target space N is a smooth Riemannian manifold of nonpositive
sectional curvature, the energy of a smooth map 5 : Ω→ N is

� 5 =

∫
Ω

|35 |2dvol6

where (Ω, 6) is a Riemannian domain and dvol6 is the volume form of Ω. We say 5 : Ω→ N
is harmonic if it is locally energy minimizing; i.e. for any G ∈ Ω, there exists A > 0 such that
the restriction D |�A (G) minimizes energy amongst all finite energy maps E : �A (G) → N with
the same boundary values as D |�A (G) . Here �A (G) denotes the geodesic ball of radius A centered
at G.
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In this paper, we also consider the target N to be NPC spaces, not necessarily smooth. Let
us recall the definition of harmonic maps in this context (cf. [KS93] for more details).

Let (Ω, 6) be a bounded Lipschitz Riemannian domain. Let ΩY be the set of points in Ω at
a distance least Y from mΩ. Denote by (Y (G) := m�Y (G). We say 5 : Ω→ N is an !2-map (or
that 5 ∈ !2(Ω,N) ) if for some point % ∈ Ω, we have∫

Ω

32( 5 (G), %)3vol6 < ∞.

For 5 ∈ !2(Ω,N), define

4
5
Y : Ω→ R, 4

5
Y (G) =

{∫
H∈(Y (G)

32 ( 5 (G), 5 (H))
Y2

3fG,Y

Y=−1 G ∈ ΩY
0 otherwise

where fG,Y is the induced measure on (Y (G). We define a family of functionals

�
5
Y : �2 (Ω) → R, �

5
Y (i) =

∫
Ω

i4
5
Y 3Vol6 .

We say 5 has finite energy, denoted by 5 ∈ ,1,2(Ω,N), if

� 5 [Ω] := sup
i∈�2 (Ω),0≤i≤1

lim sup
Y→0

�
5
Y (i) < ∞.

In this case, it was proven in [KS93, Theorem 1.10] that there exists an absolutely continuous
function 4 5 (G) with respect to Lebesgue measure, which we call the energy density, such that
4
5
Y (G)3vol6 converges weakly to 4 5 (G)dvol6 as Y tends to 0. In analogy to the case of smooth
targets, we write |∇ 5 |2(G) in place of 4 5 (G). Hence |∇ 5 |2(G) ∈ !1

loc(Ω). In particular, the
(Korevaar-Schoen) energy of 5 in Ω is

� 5 [Ω] =
∫
Ω

|∇ 5 |2dvol6 . (4.1)

Furthermore, we say 5 ∈ !2(Ω,N) has locally finite energy if for any G0 ∈ Ω, there exists a
bounded Lipschitz Riemannian subdomain ΩG0 containing G0 such that 5 ∈ ,1,2(ΩG0 ,N).

Remark 4.3. If (", 6) is a closed Riemannian manifold and r : c1(") → Isom(N) is a
homomorphism, where Isom(N) is the isometry group of the NPC space (N , 3N ), then for
any r-equivariant map D : "̃ → N with locally finite energy, the energy density |∇D |2 is a
locally !1-function on "̃ that is invariant under c1(")-action. It then descends to a function
on " , which we abusively denote by |∇D |2. Denote

6�D :=
∫
"

|∇D |23Vol6

if this integral exists (as a finite number). In this case, we say D is a finite energy map and
define 6�D as the energy of D. We write

D ∈ ,1,2
r ("̃,N).

If the dependence of energy on the metric 6 is clear from context, we will omit the superscript
6 and write �D instead.
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Definition 4.4 (Harmonic maps). We say a continuous map 5 : Ω → N from a Lipschitz
Riemannian domain (Ω, 6) is harmonic if it is locally energy minimizing; more precisely, at
each G ∈ Ω, there exists A > 0 such that D |�A (G) ∈ ,1,2(�A (G),N) and �D |�A (G) ≤ �E for any
E ∈ ,1,2(�A (G),N) with tr(D |�A (G)) = tr(E). Here, tr(·) is the trace of a finite energy map
defined in [KS93, §1.12].

For + ∈ ΓΩ where ΓΩ is the set of Lipschitz vector fields on Ω, in [KS93, §2.3], the direc-
tional energy | 5∗(+) |2 is similarly defined. The real valued !1

loc function | 5∗(+) |
2 generalizes

the norm squared on the directional derivative of 5 . The generalization of the pull-back metric
is the continuous, symmetric, bilinear, non-negative and tensorial operator

c 5 (+,,) = ΓΩ × ΓΩ→ !1(Ω,R)
where

c 5 (+,,) =
1
2
| 5∗(+ +,) |2 −

1
2
| 5∗(+ −,) |2.

We refer to [KS93, §2.3] for more details.
Let (G1, . . . , G=) be local coordinates of (Ω, 6), and 6 = (68 9 ), 6−1 = (68 9 ) be the local metric

expressions. Then energy density function of 5 can be written (cf. [KS93, (2.3vi)])

|∇ 5 |2 = 68 9c 5 (
m

mG8
,
m

mG 9
)

Next assume (Ω, 6) is a Hermitian domain and let (I1 = G1 + 8G2, . . . , I= = G2=−1 + 8G2=) be
local complex coordinates. If we extend c 5 linearly over C, then we have

1
4
|∇ 5 |2 = 68 9̄c 5 (

m 5

mI8
,
m 5

mĪ 9
).

Definition 4.5 (Proper action). Let Γ ⊂ Isom(N) be a finitely generated group with W1, . . . , W?
being the finite set of generators, where N be an NPC space. Define

X : N → [0,∞), X(%) = max 3 (WU .%, %), U = 1, . . . , ?. (4.2)
We will call the action proper if the sublevel sets of the function X are bounded in N ; i.e.
if %0 ∈ N , then for any ! > 0, there is a number ' > 0 (depending on !, %0) so that
{% ∈ N : X(%) ≤ !} ⊂ �' (%0).

The following result is implicitly addressed in [KS97]. For the sake of completeness, we
provide a detailed proof here.

Lemma 4.6. Let Γ and N be as in Definition 4.5. If Γ does not fix a point at the visual
boundary mN of N (see [BH99, Chapter II.8] for the definition), then the action of Γ on N is
proper.

Proof. Let N := N ∪ mN . We equip N with the cone topology (see [BH99, Chapter II,
Definition 8.6]) Since N is locally compact, N is compact.

Assume that Γ is not proper. Then there exists some ! > 0 such that�! := {% ∈ N | X(%) ≤
!} is an unbounded subset inN . Then we can choose a sequence of points {%=}=∈N ⊂ N such
that lim

=→∞
%= = & for some & ∈ mN . Note that for any %=, we have

3 (WU .%=, %=) ≤ !,
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where {W1, . . . , W?} is a finite set of generators of Γ. This implies that, for any W ∈ Γ, one has
3 (W.%=, %=) ≤ ℓ(W)!,

where ℓ(W) is the word length of W with respect to {W1, . . . , W?}. Thus, we have W.& = & for
each W ∈ Γ. This contradicts with the assumption that Γ does not fix a point at m# . The lemma
is proved. �

Definition 4.7. Let" be a closed Riemannianmanifold without boundary,N be a locally com-
pact NPC space, and r : c1(") → N be a representation. The metric space (!2

r ("̃,N), 32)
is defined as follows: Let !2

r ("̃,N) to be the space of r-equivariant, locally !2-maps. The
distance function 32 is given by

32(D, E) =
(∫

"

32(D(G), E(G)) 3`
) 1

2

.

Here, since G → 32(D(G), E(G)) is c1(")-invariant on "̃ , it descends to a function on " . By
[KS97, Lemma 2.1.2], (!2

r ("̃,N), 32) is an NPC space. Note that,1,2
r ("̃,N) is a subspace

of !2
r ("̃,N) (cf. Remark 4.3).

Definition 4.8. Let " , N , and r be as in Definition 4.7. We say {D: } is a energy minimizing
sequence if D: ∈ ,1,2

r ("̃,N) and
lim
:→∞

�D: = inf
E∈,1,2

r ("̃,N)
�E .

Proposition 4.9. Assume " is compact,N is locally compact and r is proper. If {D: } is a en-
ergy minimizing sequence that are uniformly locally Lipschitz continuous, then a subsequence
of {D: } converges uniformly to a harmonic map E. Moreover, the energy density measures and
the directional energy density measures of the D: converge weakly to those of E.

Proof. Let F ⊂ "̃ be a fundamental domain for the action of c1(") on "̃ . We fix a point
%0 ∈ N . The compactness of F and the uniform local Lipschitz continuity of {D: } implies
that there exists 2 > 0 such that

3 (D: (WUG), D: (G)) ≤ 23"̃ (WUG, G), ∀G ∈ F , U = 1, . . . , ?

where W1, . . . , W? are the generators of c1("). The equivariance of D: implies that for any
G ∈ F and any U ∈ {1, . . . , ?}, we have

3 (r(WU) (D: (G)), D: (G)) = 3 (D: (WU .G), D: (G)) ≤ 21 := 2 sup
V=1,...,?;G∈F

3
"̃
(WV (G), G).

Since r is proper, it follows that X(D: (G)) ≤ 21 for G ∈ F and for all : , where X is the function
defined in (4.2).

Claim 4.10. There exists some constant ' > 0 such that 3 (D: (W.F ), r(W).%0) ≤ ' for any
: ∈ N and any G ∈ F .

Proof. By Definition 4.5, there exists some ' > 0 such that

{% ∈ N | X(%) ≤ 21} ⊂ �' (%0).
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It follows that D: (F ) ⊂ �' (%0) for any : ∈ N. Since D: is r-equivariant and continuous, it
follows that for any G ∈ F , and any : ∈ N, we have

3 (D: (W.G), r(W).%0) = 3 (r(W).D: (G), r(W).%0) = 3 (D: (G), %0) ≤ '.
�

Since N is locally compact, D: is uniformly locally Lipschitz continuous, and "̃ =

∪W∈c1 (")F , by the Arzela-Ascoli theorem, the above claim yields that there exists a sub-
sequence of {D: } that converges to a map E ∈ ,1,2

r ("̃,N). The lower semicontinuity of
energy implies that E is energy minimizing, and thus a is harmonic. Last statement follows
from [KS97, Theorem 3.9]. �

4.3. Regular and singular points of harmonic maps. In [GS92], Gromov and Schoen
investigated the regularity properties of harmonic maps into a class of NPC spaces they
defined as �-connected. It is straightforward to verify that Bruhat-Tits buildings satisfy the
conditions for being �-connected.
Definition 4.11 (�-connected). An #-dimensional complex F is called �-connected if it is
an NPC space, each of its simplices is isometric to a linear image of the standard simplex and
any two adjacent simplices are contained in an apartment �, an isometric and totally geodesic
subcomplex isometric to R# .
Definition 4.12 (Regular points and singular points). Let D : Ω→ F be a harmonic map from
a Riemannian domain into an �-connected complex. A point G ∈ Ω is said to be a regular
point of D if there exists a neighborhood U of G in - and an apartment � ⊂ F such that
D(U) ⊂ �. The set of regular points of D is denoted by R(D).
Theorem 4.13 ([GS92]). If D : Ω→ F is a harmonic map from an =-dimensional Riemannian
domainΩ into an �-connected complex, then the Hausdorff dimension ofS(D) is at most =−2.
Definition 4.14. Let D be as in Theorem 4.13. For G ∈ Ω, set

OrdD (G) = lim
f→0

42f
2
f

∫
�f (G)

|∇D |23`

min
&∈Δ(�)

∫
m�f (G)

32(D, &)3Σ
.

As a limit of non-decreasing sequence of functions, G ↦→ OrdD (G) is a upper semicontinuous
function. Thus, we have the following:
(a) By [GS92, Lemma 1.3], OrdD (G) ≥ 1 for all G ∈ Ω.
(b) By [GS92, Theorem 6.3.(i)], if G8 → G and OrdD (G8) > 1, then OrdD (G) > 1.
Lemma 4.15 ([GS92], proof of Theorem 6.4). Let D be as in Theorem 4.13 and S̃0(D) to
be the set of points G ∈ Ω such that OrdD (G) > 1. Then S̃0(D) is a closed set such that
dimH (S̃0(D)) ≤ = − 2. �

Lemma 4.16 ([GS92], proof of Proposition 2.2, Theorem 2.3). Let D be as in Theorem 4.13.
For G ∈ Ω, let U := OrdD (G). There exists a constant 2 > 0 and f0 > 0 such that

f ↦→ 42f
2

f=−1+2U

∫
m�f (G)

32(D, D(G))3Σ
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and

f ↦→ 42f
2

f=−2+2U

∫
�f (G)

|∇D |23`

are non-decreasing functions in the interval (0, f0). �

Remark 4.17. For a finite energy map D : Ω→ F into an �-connected complex, |∇D |2 ∈ !1
loc

is not necessarily defined at all points of Ω. On the other hand, it follows from Lemma 4.16
that for a harmonic map D, we can define |∇D |2 at every point of G ∈ Ω by setting

|∇D |2(G) = lim
f→0

1
2=f

=

∫
�f (G)

|∇D |2 3`

where 2=f= is the volume of a ball or radius f in Euclidean space.

To further study the local behavior of harmonic maps, we consider the following notion
(cf. Remark 4.19 below).

Definition 4.18 (�-connected cone). An �-connected complex ) is called an �-connected
cone if there exists an isometric embedding of ) in Euclidean space as a geometric cone; that
is, after identifying ) as a subset of Euclidean space via the isometric embedding, we have

& ∈ ) ⇒ _& ∈ ),∀_ ∈ [0,∞). (4.3)

Henceforth, we will always assume that ) is a subset of Euclidean space. Note that the origin
®0 of the Euclidean space is the cone point, i.e. the vertex of the cone.

Remark 4.19. A neighborhood of a point %0 ∈ Δ(�) is isometric to a neighborhood of the
origin in the tangent cone)%0Δ(�) (cf. [BH99, p. 190] for the definition). Two simplices (which
are actually simplicial cones) in )%0Δ(�) are contained in a totally geodesic subcomplex )%0�

where � is an apartment ofΔ(�) . In otherwords,)%0Δ(�) is an#-dimensional�-connected
complex. Thus, when we study the local behavior of harmonic maps D : Ω→ Δ(�) at a point
G0 ∈ Ω, we can assume that D maps into the #-dimensional, �-connected cone ) := )%0Δ(�) 
where %0 = D(G0).

The following theorem follows from [GS92, Sections 5 and 6]

Theorem 4.20 ([GS92]). Let ) be an �-connected cone and ; : R= → ) be a homogeneous
degree 1 harmonic map; i.e. ; (_G) = _; (G).
(i) The map ; can be decomposed as ; = � ◦ E where � : R< → ) is an isometric and totally

geodesic map and E : R= → R< is a linear map of rank <.
(ii) Let ( ⊂ ) be the union of all apartments containing the <-flat F = ; (R=). Then ( is

an �-connected cone isometric to R< × )2 where )2 is a lower dimensional �-connected
cone. Furthermore, ( is essentially regular and ; is effectively contained in ( in the sense
of [GS92, Section 5].

(iii) LetM be a family of Riemannian metrics defined on a Euclidean unit ball B1(0) ⊂ R=
and, for 6 ∈ M, define

| |6 | | =
=∑

8, 9=1
sup
B1 (0)
|68 9 − X8 9 | +

=∑
8, 9 ,:=1

sup
B1 (0)

����m68 9mG:

���� + =∑
8, 9 ,:,;=1

sup
B1 (0)

����� m268 9

mG:mG;

����� (4.4)
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where 6 = (68 9 ) is the matrix expression of 6 with respect to the Euclidean coordinates
(G1, . . . , G=). Then there exists ^0 > 0, X0 > 0 and f0 ∈ (0, 1) such that if 6 ∈ M with
| |6 | | < ^0 and D : (B1(0), 6) → ) is a harmonic map with

sup
B1 (0)

3 (D(G), ; (G)) ≤ X0,

then D(Bf0 (0)) ⊂ (. �

Remark 4.21. Theorem 4.20.(iii) explicitly addresses the dependence on the domain metric 6
in [GS92, Theorem 5.1]. This dependence can be deduced by following the proof in either
[GS92] or [DM21, Lemma 5.5]. Specifically, ^0 must be chosen sufficiently small such that, if
| |6 | | ≤ ^0, then 6 meets the criteria stated prior to [DM21, Lemma 5.5]; namely:
• For any smooth submanifold ( of B1(0), 15

16Vol(() ≤ Vol6 (() ≤ 17
16Vol(() where Vol(()

is the Euclidean volume.
• The error term 42f

2 that appears in the monotonicity formulae of Lemma 4.16 is ≤ 2 for
all f ∈ (0, 1].

• There exists a constant 20 such that for any subharmonic function 5 : B1(0) → R with
respect to the metric 6, we have

sup
B 15A

16
(0)
5 ≤ 20

A=−1

∫
mBA (0)

5 3Σ.

Let D : Ω → ) be a harmonic map into an �-connected cone with cone point D(G0) = 0.
Use normal coordinates centered at G0 to identify G0 = 0 and let BA (0) = {G = (G1, . . . , G=) ∈
R= : |G | < A}. Let

`(f) =
(
f1−=

∫
mBf (0)

32(D, D(0))3Σ
)− 1

2

.

Definition 4.22. The blow up map is defined by
Df : B1(0) → ), Df (G) = `(f)D(fG).

Here, we are using the property eq. (4.3) of the geometric cone ) in Euclidean space.

By [GS92, Proposition 3.3] and the paragraph proceeding it, there exists a sequence f8 → 0
such that Df8 converges locally uniformly to a non-constant homogeneous harmonic map D∗ of
degree U := OrdD (G0). Consequently, Theorem 4.20 (see also [GS92, Theorem 6.3]) implies
the following.

Lemma 4.23 ([GS92]). If OrdD (G0) = 1, then there exists f0 > 0 such that D(Bf0 (G0)) ⊂
R< × )2 where )2 is a lower dimensional �-connected cone. If we write

D = (D1, D2) : Bf0 (G0) → R< × )2, (4.5)

then D1 : Bf0 (G0) → R< is a smooth harmonic map of rank < and D2 : Bf0 (G0) → )2 is a
harmonic map with OrdD

2 (G0) > 1.

Remark 4.24. Let - be a smooth projective variety, -̃ its universal cover, c- : -̃ → -

the universal covering map, r : c1(-) → � ( ) a representation, and D : -̃ → Δ(�) a
r-equivariant harmonic map.
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Since� ( ) acts transitively on the apartments of Δ(�) , it follows that if G ∈ -̃ is a regular
point of D, then every point of c−1

-
(c- (G)) is also a regular point of D. We abusively denote by

R(D) ⊂ - the image c- (R(D)).

Definition 4.25. Let D : Ω→ Δ(�) be as in Remark 4.24. For G0 ∈ S̃0(D) (cf. Lemma 4.15),
define <G0 = 0. For G0 ∈ Ω\S̃0(D), let <G0 be the integer < in eq. (4.5). Let rank(D) :=
supG0∈Ω<G0 . We say the point G0 ∈ Ω is a critical point if <G0 < rank(D). We denote the set
of critical points by S̃(D). Define R̃ (D) = Ω\S̃(D).

4.4. Equivariant harmonic maps to Bruhat-Tits buildings in families. Throughout this
subsection, let 5 : � → D be a smooth projective family. Let c� : �̃ → � be the universal
covering map. Then the fiber -̃C of �̃ → D at C ∈ D is the universal cover of -C := 5 −1(C).

Definition 4.26. For G0 ∈ -̃0 (resp. G0 ∈ -0), we may take an open neighborhood Ω of G0
in �̃ (resp. �) together with a biholomorphism i : D= × DY → Ω such that G0 is identified
with (0, . . . , 0, 0) via i and 5 ◦ c� ◦ i(I1, . . . , I=, C) = C (resp. 5 ◦ i(I1, . . . , I=, C) = C). For
simplicity of notation, we write z = (I1, . . . , I=) ∈ D=. We call such coordinate system an
admissible coordinate system centered at G0.

We first prove the following regularity result in the absolute case.

Lemma 4.27. If D : Ω→ Δ(�) is a harmonic map from a Lipschitz Riemannian domain, then
the energy density |∇D |2 is a continuous function.

Proof. By the absolute continuity of Lebesgue integrals,
4f : Ω→ R

G ↦→ 42f
2

f=−2+2U

∫
Bf (G)

|∇D |23`

is continuous. By Lemma 4.16, 4f are non-decreasing functions in the interval (0, f0) for
some f0 > 0, whose limit is |∇D |2(G). As a decreasing limit of continuous functions, the
energy density function |∇D |2(G) is upper semicontinuous.

Pick any G0 ∈ Ω. If OrdD (G0) > 1, then by [DM24, Lemma 4.13], |∇D |2(G0) = 0. The upper
semi-continuity of |∇D |2(G) implies that |∇D |2(G) is continuous at G0.
If OrdD (G0) = 1, by Lemma 4.23, there exists f0 > 0 such that D(Bf0 (G0)) ⊂ R< × F2,

where F2 is another �-complex. By (4.5), we write
D = (D1, D2) : Bf0 (G0) → R< × F2,

and D1 : Bf0 (G0) → R< is a smooth harmonic map of rank <, and D2 : Bf0 (G0) → F2 is a
harmonicmapwithOrdD

2 (G0) > 1. Hence |∇D2 | (G) is continuous at G0 by the above arguments.
Since |∇D |2(G) = |∇D1 |2(G) + |∇D2 | (G), and D1 is smooth, it follows that |∇D | (G) is continuous
at G0. The lemma is proved. �

In the relative case, we have the following result.

Lemma 4.28. Let ) be an �-connected cone, and let 6C be a family of Riemannian metrics
on D=. Suppose DC : D= → ) , C ∈ DY, is a family of uniformly Lipschitz harmonic maps with
respect to 6C , such that
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• DC (z) varies uniformly in C in the following sense: ∀Y0 > 0, ∃X0 > 0 such that z ∈
D=, C1, C2 ∈ DY with |C1 − C2 | < X0⇒ |DC1 (z) − DC2 (z) | < Y0.

• The component functions of 6C (z) with respect to the coordinates (I1, . . . , I=) ofD= varies
smoothly in C.

• For any BA (z) ⊂ D=, and any C0 ∈ DY

lim
C→C0

∫
BA (z)
|∇DC |23Vol6C =

∫
BA (z)
|∇DC0 |23Vol6C0 . (4.6)

Then the map (z, C) = (I1, . . . , I=, C) ↦→ |∇DC |2(z) is a continuous function in D= × DY.

Proof. We will show that (z, C) = (I1, . . . , I=, C) ↦→ |∇DC |2(I1, . . . , I=) is continuous at
(0, 0) ∈ D × DY where 0 = (0, . . . , 0) ∈ D=. The same argument will show that this function
is continuous at any other point of D= × DY. We consider the following two cases:

Case 1: OrdD0 (0) > 1. Thus, |∇D0 |2(0) = 0. Assume on the contrary that (z, C) ↦→ |∇DC |2(z)
is not continuous at (0, 0); i.e. there exists Y > 0 and z8 = (I81, . . . , I8=) → 0 such that
Y ≤ |∇DC8 |2(z8).
To derive a contradiction, we first apply the monotonicity property of energy in Lemma 4.16

and note that the order is ≥ 1, to obtain

Y ≤ 42A

l2=A2=

∫
BA (z8)

|∇DC8 |23Vol6C8 (4.7)

where l2= is the volume of the unit ball in R2=. Second,����∫
BA (z8)

|∇DC8 |23Vol6C8 −
∫
BA (0)
|∇DC8 |23Vol6C8

���� ≤ ∫
BA (z8)4BA (0)

|∇DC8 |23Vol6C8
≤ �Vol6C8 (BA (z8)4BA (0))

where � is the Lipschitz bound. Combining the above two inequalities with the fact that
Vol(BA (z8)4BA (0)) → 0 as 8 →∞, we obtain

Y ≤ lim
8→∞

1
l2=A2=

∫
BA (0)
|∇DC8 |23Vol6C8 .

Combining this inequality with assumption eq. (4.6), we get

Y ≤ 1
l2=A2=

∫
BA (0)
|∇D0 |23Vol60 .

By Remark 4.17, we have

lim
A→0

1
l2=A2=

∫
BA (0)
|∇D0 |23Vol60 = |∇D0 |2(0),

we conclude Y ≤ |∇D0 |2(0), a contradiction.

Case 2: OrdD0 (0) = 1. Choose normal coordinates centered at 0. Let (6Cf,8 9 ) be the ma-
trix expression of the metric 6Cf (G) := 6C (fG) in B1(0). We will letM be the collection of
metrics 6Cf. Note that | |6Cf | | → 0 (cf. Theorem 4.20) as |C | → 0 and f → 0.
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Denote the distance function on ) by 3) . Define a scaling factor

`(f) =
(
f1−=

∫
mBf (0)

32(D0, D0(0))3Σ
)− 1

2

.

and a new distance function on ) by setting 3f := `(f)3) . The blow up maps of D0 at G0 is
defined by

D0f : B1(0) → (), 3f), D0f (G) = D0(fG).
Choose a subsequence f8 → 0 such that D0f8 converges to a tangent map D0∗. Also define

DCf : B1(0) → (), 3f), DCf (G) = DC (fG).
Here, we note that DCf is not the usual blow up map of DC since the choice of the scaling `(f)
to define the target distance function is not consistent with the scaling used for blow up maps

of DC . For the blow up maps of DC , the correct scaling is
(
f1−=

∫
mBf (0)

32(DC , DC (0))3Σ
)− 1

2 .
As in Remark 4.19, we assume D0 maps into the tangent cone ) := )%0 (Δ(�)). Since

OrdD0 (0) = 1, D0∗ : B1(0) → ) is a homogeneous degree 1 harmonic map. By Theorem 4.20,
D∗0 is effectively contained in a essentially regular subcomplex R< × )2 where )2 is a lower
dimensional �-connected cone.

Let ^0 > 0, X0 > 0 and f0 > 0 be from Theorem 4.20. Fix g1 > 0 and 8 sufficiently
large such that | |6Cf8 | | < ^0 for |C | < g1 and supB1 (0) 3 (D0f8 , D0∗) < X0. Since DCf8 converges
uniformly to D0f8 , there exists g0 ∈ (0, g1) such that |C | < g0 implies supB1 (0) 3 (DCf8 , D0∗) < X0.
Hence, Theorem 4.20 implies that there exists f0 > 0 such that DCf8 (Bf0 (0)) ⊂ R< × �, or
equivalently, DC (Bf0f8 (0)) ⊂ R< × �. We write

DC = (D1
C , D

2
C ), D1

C : Bf0f8 (0) → R<, D2
C : Bf0f8 (0) → )2 (4.8)

in terms of the product structure. Since D1
C : Bf0f8 (0) → R< is a smooth harmonic map for

each C, the uniform convergence of D1
C to D1

0 implies the local �∞-convergence of D1
C to D1

0 by
elliptic regularity. Thus,

(z, C) ↦→
mD1

8

mI 9
(I1, . . . , I=, C) is continuous in Bf0f8 (0), ∀8 = 1, . . . , # and 9 = 1, . . . , <.

Since OrdD
2
0 (0) > 1, Case 1 implies that (z, C) → |∇D2

C |2(z) is continuous at (0, 0). Combining
the continuity of |∇D1

C |2 and |∇D2
C |2 at (0, 0), we conclude that (z, C) → |∇DC |2(z) is continuous

at (0, 0). The lemma is proved. �

Let us now state and prove the main result of this section.

Theorem 4.29. Let 5 : � → D be the smooth projective family. Let r : c1(�) → � ( ) be a
Zariski dense representation, where� is a semisimple algebraic group over a non-archimedean
local field  . Then there is a r-equivariant map D : �̃ → Δ(�) such that

(1) For each C ∈ D, DC := D |
-̃C

: -̃C → Δ(�) is rC-equivariant and pluriharmonic.
(2) Let < = rank(D0) and let G0 ∈ R̃(D0); i.e. G0 is a non-critical point of D0 defined in

Definition 4.25. Assume that D0 maps some neighborhood of G0 into the tangent cone
) := )D(G0) (Δ(�) ) (cf. Remark 4.19). Then there exists an admissible coordinate system
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Ω ' D= × DY centered at G0 (cf. Definition 4.26), an apartment � of ) , and a flat F ⊂ �
satisfying the following:

(i) D0(Ω ∩ -̃0) ⊂ �. (cf. Definition 4.26).
(ii) The union of all flats parallel to F is a subbuilding isometric to R< ×� where � itself

is another Euclidean building. Then D(Ω) ⊂ R< × �.
(iii) Write DC = D |D=×{C} = (D1

C , D
2
C ) where

D1
C : D= → R< and D2

C : D= → �.

Here we adopt the notation that if < = dim(Δ(�) ), then DC = D1
C . Define

D1(I1, . . . , I=, C) := D1
C (I1, . . . , I=)

and let D1 = (D1
1, . . . , D

1
<) be its expression in terms of coordinate functions. Then

we have the following:
(a) D2

0 is identically constant.
(b) The partial derivatives of the coordinate functions of D1 with respect to I 9 are

continuous in Ω, i.e. for each 8 = 1, . . . , < and 9 = 1, . . . , =,

(I1, . . . , I=, C) ↦→
mD1

8

mI 9
(I1, . . . , I=, C) ∈ �0(D= × DY).

(c) (I1, . . . , I=, C) ↦→ |∇D2
C |2(I1, . . . , I=) is a continuous function on Ω = D= × DY

and |∇D2
C |2 → 0 as C → 0.

Proof of Theorem 4.29. LetC be a r(c1(-))-invariantminimal closed convex subset ofΔ(�) 
introduced in [BDDM22, Lemma 2.2]. The r-equivariant map D : �̃ → Δ(�) is defined by
setting D |

-̃C
to be the r-equivariant pluriharmonic map into C, whose existence is established

in [GS92], and uniqueness is shown in the proof of [BDDM22, Theorem 2.1]. This proves the
existence assertion in Item (1).

Before we give a proof of Item (2), we need a preliminary result (cf. Claim 4.30 below).
Let �C : -̃0 → -̃C be a lift of a smooth family of maps -0 → -C depending smoothly on C ∈ D
such that �0 is the identity map. Let 6C be the pullback via �C of the restriction to -̃C of the
Riemannian metric on �̃. For any r-equivariant map E : -0 → Δ(�) , let 6C�E be the energy
of E with respect to the metric 6C on -0. Note that, since D0 and DC ◦ �C are both r-equivariant,
the function 32(D0, DC ◦�C) defined on -̃0 is c1(�)-invariant, and hence descends to -0. Same
is true for the energy density functions and the directional energy density functions of D0 and
DC ◦ �C .

Claim 4.30. The function DC ◦ �C converges uniformly to D0 on -̃0.

Proof. Since the sequence of metrics 6C converges uniformly in�∞ to 60, there exists a constant
� > 0 such that

(1 − �C)60�D0 ≤ (1 − �C)60�DC◦�C ≤ 6C�DC◦�C ≤ 6C�D0 ≤ (1 + �C)60�D0 . (4.9)

Here, the first inequality is due to D0 being energy minimizing with respect to the metric 60.
The second inequality is due to the fact that 6C → 60. In particular, if (G1, . . . , G2=) is the
real coordinates on -0 and 68 9C is the expression of the co-metric of 6C with respect to these
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coordinates, then 68 9C = (1 + $ (C))6
8 9

0 . Thus, the energy density function of DC with respect to
these coordinates is

|∇DC |26C = 6
8 9
C

mDC

mG8
· mDC
mG 9

= (1 +$ (C))68 90
mDC

mG8
· mDC
mG 9

= (1 +$ (C)) |∇DC |260

where |∇DC |26C (resp. |∇DC |
2
60) is the energy density function of DC with respect to the domain

metric 6C (resp. 60) and we use the notation mD
mG8
· mD
mG 9

to denote the pullback inner product
c(mG8 , mG 9 ) defined in [KS93, Section 2.3] with the coordinate vector fields (mG1 , . . . , mG2=). The
third (fourth) inequality follows from a reason analogous to the first (second) inequality.

In particular, [GS92, Theorem 2.4] implies that there exists a constant �0 such that, for all
C is sufficiently close to 0, DC ◦ �C is Lipschitz continuous with Lipschitz constant bounded by
�0 (with respect to the distance function on -̃C induced by the metric 6C , and hence also with
respect to the metric 60 since these metrics are uniformly equivalent).

Suppose that DC ◦ �C does not converge uniformly to D0 as C → 0. Then there exists Y > 0,
a sequence C8 → 0, G8 ∈ -̃0 such that 3 (DC8 ◦ �C8 (G8), D0(G8)) ≥ Y. Since r is a Zariski dense
representation, it does not fix a point at infinity. By [KS97, Theorem 2.2.1], the action of r is
proper (cf. Definition 4.5). Furthermore, lim

8→∞
60�DC8 ◦ �C8 − 60�D0 = 0 by (4.9), which shows

that {DC8 ◦ �C8 } is a minimizing sequence. Taking a subsequence if necessary, Lemma 4.9
implies that {DC8 ◦ �C8 } converges uniformly to a r-equivariant energy minimizing map E. By
the uniqueness of the equivariant harmonic map into C (cf. [BDDM22, Section 2.7]), we
conclude D0 = E. Thus, lim

8→∞
3 (DC8 ◦ �C8 (G8), D0(G8)) = 0. This contradiction proves DC ◦ �C

converges uniformly to D0. �

We now give a proof of Item (2). Since G0 ∈ R̃(D0) ⊂ R(D0), there exists a admissible
coordinate system Ω ' D= × DY centered at G0 in Definition 4.26, and an apartment � such
that D0(D=) ⊂ �. This proves Item (i). Moreover, we have OrdD0 (G0) = 1 and the image of D0∗
is a <-dimensional flat F since G0 ∈ R̃(D0) and rank(D0) = <. Here D0∗ is defined just before
Lemma 4.23. Adopting the notation for Case 2 in the proof of Lemma 4.28, let R< × � ⊂ )
be the subbuilding defined as the union of all apartments containing F.

By Claim 4.30, and following the argument in the proof of Lemma 4.28, we apply Theo-
rem 4.20 to conclude that there exist g0 > 0 and X > 0 such that DC (D=X) ⊂ R

< × � for |C | < g0.
In other words, by rescaling the coordinates of Ω via the transformation (z, C) ↦→ ( z

X
, C) and

replacing Y by g0, we obtain D(D= × DY) ⊂ R< × �. This completes the proof of Item (ii).
Let us prove Item (iii). Since DC (D=) ⊂ R< × �, we can write DC = (D1

C , D
2
C ). By shrinking

Ω if necessary, we can assume that the rank of 3D1
0 is equal to < at all points of D= which then

implies that D2
0 is identically a constant. This proves Item (a). Item (b) follows from the same

argument as in Case 2 of Lemma 4.28.
Next, analogously to (4.9), for any C0 ∈ DY we have

(1 − �C)6C0�DC0◦�C0 ≤ (1 − �C)6C0�DC◦�C ≤ 6C�DC◦�C ≤ 6C�DC0◦�C0 ≤ (1 + �C)6C0�DC0◦�C0 ,

which implies the convergence of the total energy

lim
C→C0

6C�DC◦�C = 6C0�DC0◦�C0 . (4.10)
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Thus, following the proof of Claim 4.30, we can show that DC ◦ �C (z), varies uniformly in C in
the sense of Lemma 4.28. Since D1

C varies uniformly in C (see the sentence after (4.8) in proof
of Lemma 4.28), we have that

lim
C→C0

∫
BA (z)
|∇D1

C |23Vol6C =
∫
BA (z)
|∇D1

C0 |
23Vol6C0 (4.11)

and D2
C (z) varies uniformly in C in the sense of Lemma 4.28.

Claim 4.31. For any Euclidean ball BA (z) ⊂ D=, we have

lim
C→C0

∫
BA (z)
|∇D2

C |23Vol6C =
∫
BA (z)
|∇D2

C0 |
23Vol6C0 . (4.12)

Proof. Consider the probability measure `C on -0 defined by

3`C =
|∇(DC8 ◦ �C) |23Vol6C

6C�DC◦�C
.

Combining the weak convergence of the energy density measure of DC ◦ �C to DC0 ◦ �C0 (which
follows from Proposition 4.9), the convergence of total energy (cf. (4.10)) implies the weak
convergence of `C to `C0 . By § 4.2, `0 is an absolutely continuous measure. Hence mBA (0) is
a continuity set for `0, i.e. `0(mBA (0)) = 0. By Portmanteau’s theorem (cf. [Bil99, Theorem
2.1]), one has

lim
C→C0

`C (BA (0)) = `C0 (BA (0)).

Therefore, using the fact that lim
C→C0

6C�DC◦�C = 6C0�DC0◦�C0 , we conclude

lim
C→C0

∫
BA (z)
|∇DC |23Vol6C =

∫
BA (z)
|∇DC0 |23Vol6C0 .

Since |∇DC |2 = |∇D1
C |2 + |∇D2

C |2, (4.12) follows from (4.11). The claim is proved. �

Recall that D2
C (z) varies uniformly in C in the sense of Lemma 4.28. By Claims 4.30 and 4.31,

conditions in Lemma 4.28 are satisfied. Hence the map

(z, C) = (I1, . . . , I=, C) ↦→ |∇DC |2(z)

is a continuous function in D= × DY. Item (c) follows from the fact that |∇D2
0(z) |

2 = 0 for any
z ∈ D=. This completes the proof of Item (iii), and hence the proof of Item (2). The theorem
is proved. �

5. Lower semi-continuity of Γ-dimension: reductive case

In this section, we prove Theorem C in the case where c1(-0) is reductive. We apply The-
orems 2.5 and 4.29 in combination with techniques from the reductive Shafarevich conjecture
[Eys04, DYK23].
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5.1. Deformation of canonical currents. Let - be a compact Kähler manifold and let r :
c1(-) → � ( ) be a Zariski dense representation, where � is a reductive group over a
non-archimedean local field  . Let D : -̃ → Δ(�) be a r-equivariant pluriharmonic map.
Note that any G ∈ R(D) has an open neighborhood ΩG ⊂ -̃ such that D(ΩG) ⊂ � where �

is an apartment of Δ(�). We fix an isometry 8� : � → R# . Write 8� ◦ D |ΩG = (D1, . . . , D# ).
The pluriharmonicity of D implies that

√
−1mm̄D8 = 0 for each D8. We consider a smooth

semi-positive (1, 1)-form on ΩG defined by

√
−1

#∑
8=1

mD8 ∧ m̄D8 .

Note that such (1, 1)-form does not depend on the choice of the isometry 8�. By [Eys04,
§3.3.2], it is also invariant under c1(-)-action. Therefore, it descends to a smooth real closed
semi-positive (1, 1)-form on R(D). It is shown in [Eys04, p. 540] that it extends to a positive
closed (1, 1)-current )r on - with continuous potential.

Definition 5.1 (Canonical current). The above closed positive (1, 1)-current )r on - is called
the canonical current of r.

Let 5 : � → D be the smooth projective family, and let r : c1(�) → � ( ) be a
Zariski dense representation, where � is a semi-simple algebraic group defined over a non-
archimedean local field  . We apply Theorem 4.29. Then there is a r-equivariant continuous
map D : �̃ → Δ(�) such that DC := D |

-̃C
: -̃C → Δ(�) is a r-equivariant pluriharmonic for

each C ∈ D satisfying the properties therein. Precisely, pick any G0 ∈ R̃(D0). There exists an
open neighborhood Ω of G0 in �̃ such that c� : Ω→ c� (Ω) is an isomorphism, and we have

D(Ω) ⊂ R< × �.
Here � is also a Euclidean building, and Ω ' D= × DY such that 5 ◦ c� (I1, . . . , I=, C) = C
within this coordinate system. Write DC = D |D=×{C} = (D1

C , D
2
C ) where

D1
C : D= → R< and D2

C : D= → �.

Then D2
0 is constant. We abusively write Ω for c� (Ω). Consider the canonical current )rC on

-C associated with rC : c1(-) → � ( ). In this case, we have

)r0 |Ω∩-0 =
√
−1

<∑
8=1

mD1
0,8 ∧ m̄D

1
0,8

where we write D1
C := (D1

C,1, . . . , D
1
C,<). By Theorem 4.29,

√
−1

∑<
8=1 mD

1
C,8
∧ m̄D1

C,8
is a smooth

semi-positive (1, 1)-form on D=, that varies continuously with C ∈ DY.
Fix any C ∈ DY. Pick any G ∈ D=∩R(D2

C ), whereR(D2
C ) is the regular set of the pluriharmonic

map D2
C defined in Definition 4.12. Then there exists a neighborhood Ω2 of G in D= such that

D2
C (Ω2) ⊂ �2, where �2 is an apartment of the building �. We fix an isometry 8�2 : �2 →
R#−<. Write 8�2 ◦ D2

C = (D2
C,<+1, . . . , D

2
C,#
). Then by our construction of canonical currents, we

have

)rC |Ω2 =
√
−1

<∑
8=1

mD1
C,8 ∧ m̄D1

C,8 +
√
−1

#∑
9=<+1

mD2
C, 9 ∧ m̄D2

C, 9 .
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Since G is an arbitrary point in D= ∩ R(D2
C ), then

)rC |D=∩R(D2
C ) ≥
√
−1

<∑
8=1

mD1
C,8 ∧ m̄D1

C,8 .

Since )rC has continuous potential, and D=\R(D2
C ) is a closed subset of D= of Hausdorff

codimension at least two by Theorem 4.13, it follows that the above inequality holds over the
whole D=. In conclusion, we have the following result:

Lemma 5.2. Let 5 : � → D be a smooth projective family and r : c1(-0) → � ( )
be a Zariski dense representation, where � is a semi-simple algebraic group over a non-
archimedean local field  . There exists a full measure open subset -◦0 ⊂ -0, such that any
G0 ∈ -◦0 has an admissible coordinate system Ω ' D= × DY in � centered at G0, with a
real (1, 1)-form ) (I, C) =

√
−1

∑
8, 9 08 9 (I, C)3I8 ∧ 3Ī 9 on D= whose coefficients 08 9 (I, C) are

continuous function, such that
(i) For each fixed C ∈ DY, )C (I) := ) (I, C) is a smooth semi-positive closed (1, 1)-form onD=.
(ii) For each C ∈ DY, one has )rC |Ω∩-C ≥ )C .
(iii) )r0 |Ω∩-0 = )0.

Proof. Within the notions above, we set) (I, C) :=
√
−1

∑<
8=1 mD

1
C,8
∧ m̄D1

C,8
. The above arguments

together with Theorem 4.29 yield the lemma. �

When � is a tori, we have a much simpler result.

Lemma 5.3. Let 5 : � → D be the smooth projective family. Let r : c1(�) → � ( ) be a
representation, where � is a tori over a non-archimedean local field  . Then the canonical
current )rC on -C induced by rC : c1(-C) → � ( ) is a smooth semi-positive (1, 1)-form on -C
that varies smoothly in C.

Proof. The Bruhat-Tits building of � is a real Euclidean space + := R# such that � ( ) acts
on + by translation (cf. [KP23]). For the action of � ( ) on + , it induces a representation
g : c1(�) → (+, +). Let the homomorphism pr8 : (R# , +) → (R, +) be the projection into
8-th factor, and let g8 = pr8 ◦ g. Then g8 : c1(�) → (R, +) can be identified with an element
_8 ∈ �1(�,R) ' �1(-0,R) since �1(�,R) ' Hom(�1(�,Z),R). Let 6 be a Kähler metric
on �. We fix a smooth trivialization � : � → -0 × D, and let �C : -C → -0 be the induced
diffeomorphism. Then �C induces a smooth family of Riemannian metrics 6C on -0. Therefore,
there exists a family of smooth 1-forms b8,C on -0, each is harmonic with respect to the metric
6C and varying smoothly in C, such that their cohomology class {b8,C} = _8. In this case, �∗C b8,C
is a harmonic 1-form on (-C , 6 |-C ). Let [8,C = (�∗C b8,C)1,0 be the (1, 0)-part of b8,C , which is
moreover a holomorphic 1-form on -C by the Hodge theory. Then [8,C varies smoothly with
respect to C. In other words, for any G0 ∈ - and any admissible coordinate systemΩ ' D=×DY
centered at G0 in�, one has

[8,C |D= =
=∑
9=1
0 9 (I, C)3I 9 ,
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such that 0 9 (I, C) are smooth functions on D= ×DY. By [DM24], the canonical current of rC is
given by

)rC |Ω∩-C =
√
−1

=∑
8=1

[8,C ∧ [8,C .

Consequently, )rC is a smooth closed semi-positive (1, 1)-form on -C varying smoothly with
C. �

Lemmas 5.2 and 5.3 imply the following stronger result than Lemma 5.2.

Theorem 5.4. Let 5 : � → D be a smooth projective family and r : c1(-0) → � ( ) be a
Zariski dense representation, where � is a reductive algebraic group over a non-archimedean
local field  . There exists a full measure open subset -◦0 ⊂ -0 such that any G0 ∈ -◦0 has
an admissible coordinate system Ω ' D= × DY in � centered at G0, with a real (1, 1)-form
) (I, C) =

√
−1

∑
8, 9 08 9 (I, C)3I8 ∧ 3Ī 9 on D= satisfying

(i) the coefficents 08 9 (I, C) are continuous function on D= × DY.
(ii) For each fixed C ∈ DY, )C (I) := ) (I, C) is a smooth semi-positive closed (1, 1)-form onD=.
(iii) For each C ∈ DY, one has )rC |Ω∩-C ≥ )C .
(iv) )r0 |Ω∩-0 = )0.

Proof. Consider the enlarged Bruhat-Tits buildingΔ(�). It is indeed the product of the Bruhat-
Tits building of Δ(��) where �� is the derived group of �, with a real Euclidean space
+ := R# such that � ( ) acts on + by translation (cf. [KP23]). Note that there is a natural
action of �� ( ) on Δ(��). The action of � ( ) on Δ(��) is given by the composition of
� ( ) → �� ( ) and the action of of�� ( ) on Δ(��).

We consider the representation f : c1(-) → �� ( ) induced by r, which is Zariski dense.
Let )fC be the canonical currents associated with fC : c1(-C) → �� ( ). Then it satisfies the
properties in Theorem 5.4.

On the other hand, for the action of � ( ) on + , it induces a representation gC : c1(-C) →
(+, +) for each C ∈ D. By Lemma 5.3, the canonical current )gC forms a family of smooth
semi-positive closed (1, 1)-forms on -C that vary smoothly in C. Observe that )rC = )gC + )fC
is the canonical current associated with rC . Lemma 5.2 together with Lemma 5.3 establish the
theorem. �

5.2. Proof of Theorem C.(i). In this subsection, we prove Theorem C.(i), which is sufficient
for establishing Theorem D. This will also imply Theorem C in the case where c1(-0) is
reductive.

Definition 5.5 (<-positive form). Let - be a complex manifold. A semi-positive (1, 1)-forml

on - is said to be <-positive if at each point of - , l has at least < strictly positive eigenvalues.

Theorem 5.6. Let 5 : � → D be a smooth projective family. Let "C := "B(c1(-C),GL# ) (C)
denote the Betti moduli space of c1(-C). Define �C ⊳ c1(-C) as the intersection of the kernels
of all reductive representations r : c1(-C) → GL# (C). Then the function C ↦→ W3 (-C , �C) on
D is lower semicontinuous.

Proof. We write - for -0. Consider the Betti moduli space " := "B(c1(-),GL# ) (C).
By [Eys04], [DYK23, Theorems 3.29] and [DYK23, Proof of Theorem 4.31] there exist
Zariski dense representations {g8 : c1(-) → �8 ( 8)}8=1,...,: , where each �8 ⊂ GL# is a
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reductive group over a non-archimedean local field  8 of characteristic zero, and C-VHS
{f8 : c1(-) → GL# (C)}8=1,...,ℓ such that the Shafarevich morphism sh" : - → Sh" (-) of
" defined in Definition 3.3 exists and satisfies the following properties:
(i) there exist closed positive (1, 1)-currents (1, . . . , (: and closed semi-positive (1, 1)-forms

l1, . . . , lℓ on Sh" (-) such that sh∗"(8 = )g8 and Sh∗"l 9 = lf9 . Here)g8 is the canonical
current associated with g8 : c1(-) → �8 ( 8) defined in Definition 5.1 and lf9 is the
canonical form associated with f9 : c1(-) → GL# (C) defined in Definition 2.4.

(ii) There is a Kähler form lSh" (-) on Sh" (-) such that

:∑
8=1

(8 +
ℓ∑
9=1
l 9 = lSh" (-) +

√
−1mm̄k,

where k is a continuous function on Sh" (-).
(iii) There exists a Zariski open subset of Sh" (-) over which each (8 is smooth.
(iv) For each fiber / of sh" and any reductive representation g : c1(-) → GL# (C), the

image g(Im[c1(/) → c1(-)]) is a finite group,
Since each (8 has continuous potential, it follows that the positive closed (1, 1)-current
(∑:

8=1 (8 +
∑ℓ
9=1 l 9 ) hasminimal singularity in the sense of Demailly, i.e. it is less singular than

any other positive current in its cohomology class (cf. [BEGZ10, §1.4] for the definition). Let
Sh" (-)◦ be the regular locus of Sh" (-). Set < := dim Sh" (-). By [BEGZ10, Definition
1.17] and Item (ii), the non-pluripolar product of (∑:

8=1 (8 +
∑ℓ
9=1 l 9 ) is equal to∫

Sh" (-)◦
©«
:∑
8=1

(8 +
ℓ∑
9=1
l 9

ª®¬
<

=

∫
Sh" (-)◦

(lSh" (-))< > 0.

This implies that, there exists an open subset* of Sh" (-)◦ such that
(1) sh−1

" (*) → * is a proper holomorphic submersion.
(2)

∑:
8=1 (8 +

∑ℓ
9=1 l 9 is smooth and strictly positive over*.

We define {g8,C : c1(-C) → �8 ( 8)}8=1,...,: to be the representation as the compositions
of g8 with the natural isomorphism c1(-C) → c1(-). Similarly, the representations {f8,C :
c1(-C) → GL# (C)}8=1,...,ℓ are defined as the compositions of f8 and c1(-C) → c1(-). Note
that f8,C might not necessarily underlie a C-VHS for C ≠ 0. Let )g8,C be the canonical current
on -C of g8,C . We apply Theorem 5.4. Then there exists a point G0 ∈ sh−1

" (*) such that it
has an admissible coordinate system (Ω ' D= × DY; (I, C)) in � centered at G0 together with
a continuous (1, 1)-form )8 (I, C) =

√
−1

∑
8, 9 08 9 (I, C)3I8 ∧ 3Ī 9 on D= satisfying the following

properties:
(a) Ω ∩ -0 ⊂ sh−1

" (*).
(b) the coefficents 08 9 (I, C) of )8 (I, C) are continuous function on D= × DY.
(c) For each fixed C ∈ DY, )8,C (I) := )8 (I, C) is a smooth semi-positive closed (1, 1)-form on

D=.
(d) For each C, we have )g8,C (I) |Ω∩-C ≥ )8,C (I).
(e) For C = 0, we have )g8,0 (I) |Ω∩-0 = )8,0(I).
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Let )f8,C be the canonical form on -C associated with f8,C . By Theorem 2.5, the canonical forms
lf8,C on -C vary continuously in C. Recall that

:∑
8=1
)g8,0 +

ℓ∑
9=1
lf9 ,0 =

:∑
8=1
)g8 +

ℓ∑
9=1
lf9 = sh∗" (

:∑
8=1

(8 +
ℓ∑
9=1
l 9 ).

Hence by Items (1) and (2), Items (a), (b) and (e),
(∑:

8=1 )8,0 +
∑ℓ
9=1 lf9 ,0

)
|Ω∩-0 is <-

semipositive. Note that the matrix continuous function has lower semicontinuous rank. This
implies that, after we shrink the neighborhood Ω of G0 in �, there exists some Y > 0 such
that for each C ∈ DY, we have -C ∩ Ω ≠ ∅, and

(∑:
8=1 )8,C +

∑ℓ
9=1 lf9 ,C

)
|Ω∩-C is <-positive.

Therefore, by Item (d), we conclude the following

Claim 5.7. For each C ∈ DY, the positive (1, 1)-current
(∑:

8=1 )g8,C +
∑ℓ
9=1 lf9 ,C

)
|Ω∩-C is

bounded from below by the smooth closed<-positive (1, 1)-form
(∑:

8=1 )8,C +
∑ℓ
9=1 lf9 ,C

)
|Ω∩-C .

Note that c1(-C) ' c1(-). Hence "C := "B(c1(-C),GL# ) (C) is naturally identified
with " . For each C ∈ DY, we consider the Shafarevich morphism sh"C : -C → Sh"C (-C),
whose existence is also proven in [Eys04, DYK23]. Let / be any smooth fiber of sh"C . By
Definition 3.3, g8,C (Im[c1(/) → c1(-C)]) is finite. By the unicity of g8,C-equivariant harmonic
maps in [DM24, Theorem B], it follows that )g8,C |/ is trivial. By the unicity of harmonic
bundles in [Cor88], lf9 ,C |/ is also trivial. Let Sh"C (-C)◦ be a Zariski dense open subset of
the regular locus of Sh"C (-C) such that sh"C : -C → Sh"C (-C) is smooth over Sh"C (-C)◦.
Set -◦C = sh−1

"C
(Sh"C (-C)◦), and <C := dim Sh"C (-C). The above arguments implies that(∑:

8=1 )g8,C +
∑ℓ
9=1 lf9 ,C

)
is at most <C-positive over -◦C .

Note that -◦C ∩ΩC is non-empty. By Claim 5.7 we conclude that <C ≥ <. It yields

Claim 5.8. For each C ∈ DY, we have dim Sh"C (-C) ≥ dim Sh" (-0).

By Remark 3.5, we note that the Γ-reduction W(-C ,�C ) : -C d Γ�C (-C) for (-C , �C) is
bimeromorphic to sh"C : -C → Sh"C (-C). Hence we have W3 (-C , �C) = dim Sh"C (-C) for
each C. Theorem C.(i) then follows from Claim 5.8.

Let us prove TheoremC.(ii) if c1(-0) is reductive. If there exists an almost faithful reductive
representation r : c1(-) → GL# (C), then rC : c1(-C) → GL# (C) is also almost faithful and
reductive for each C ∈ D. By Lemma 3.4, sh"C : -C → Sh"C (-C) is the Shafarevich morphism
of -C . From Remark 3.5, one has dim Sh"C (-C) = W3 (-C). By Claim 5.8, this directly implies
the second claim of Theorem C. �

6. Pseudo-Brody hyperbolicity in families

As an application of Theorem C.(i), we prove a result on the openness of pseudo-Brody
hyperbolicity.

Theorem 6.1 (=Theorem D). Let 5 : � → D be a smooth projective family. Assume that
there is a big and reductive representation r : c1(-0) → GL# (C). If -0 is pseudo-Brody
hyperbolic, then -C is also pseudo-Brody hyperbolic for sufficiently small C.
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Proof. In [CDY22, Theorem C], we prove Conjecture 1.10 if there exists a big and reductive
representation c1(-) → GL# (C). Thus, by our assumption for -0, we apply [CDY22,
Theorem C] to conclude that -0 is of general type. By Siu’s invariance of plurigenera
[Siu98, Pău07], -C is of general type for any C ∈ D.
Set " := "B(c1(-0),GL# ) (C). Since [r] ∈ " , the Shafarevich morphism sh" : -0 →

Sh" (-0) is a birational morphism. By [DYK23, Lemma 3.25], there exists another reductive
representation g : c1(-0) → GL# (C) such that for any reductive representation f : c1(-0) →
GL# (C), we have

ker g ⊂ kerf. (6.1)
Let gC : c1(-C) → GL# (C) be the composite map of g and the natural isomorphism c1(-C) →
c1(-0) induced by 5 .
Claim 6.2. There exists Y > 0 such that gC is a big and reductive representation for any C ∈ DY.
Proof. By (6.1), we have

ker gC ⊂ kerf, ∀ reductive f : c1(-C) → GL# (C). (6.2)
This implies that, for any closed subvariety / of -C , if gC (Im[c1(/) → c1(-C)]) is finite, then
f(Im[c1(/) → c1(-C)]) is finite for any reductive representation f : c1(-0) → GL# (C).
Set "C := "B(c1(-C),GL# ) (C). By Definition 3.3, for every C ∈ D, sh"C : -C → Sh"C (-C)
coincides with the Shafarevich morphism shgC : -C → ShgC (-C) of gC .

By Theorem C.(i), there exists Y > 0 such that for any C ∈ DY, we have
dim ShgC (-C) = dim Sh"C (-C) ≥ dim Sh" (-0) = dim -0.

Therefore, gC is a big and reductive representation for any C ∈ DY. �

Since -C is of general type, by Claim 6.2 we apply [CDY22, Theorem C] again to conclude
that -C is pseudo-Brody hyperbolic for any C ∈ DY. The theorem is proved. �

From Claim 6.2, we obtain the following result, which may be of independent interest.

Proposition 6.3. Let 5 : � → D be a smooth projective family. Assume that there is a big
and reductive representation r : c1(-0) → GL# (C). Then g : c1(-C) → GL# (C) is big and
reductive for sufficiently small C. �

Note that it is unclear whether rC : c1(-C) → GL# (C), induced by the big representation r
in Proposition 6.3, is big for sufficiently small C.

We conclude this section with the proof of Corollary E.

Proof of Corollary E. In Case (a), by the work of Griffiths-Schmid [GS69], the period domain
� is equipped with a natural metric that has negative holomorphic sectional curvature along
the horizontal direction. Since the period map of r is assumed to be generically finite onto its
image, it follows from the Ahlfors-Schwarz lemma that - is pseudo-Brody hyperbolic.

On the other hand, by Lemma 3.6, r is big. By [Sim92], r is also reductive. Hence, the
conditions in Theorem D are fulfilled, allowing us to conclude that a small deformation of -
is also pseudo-Brody hyperbolic.

In Case (b), by [CDY22, Theorem A], - is pseudo-Brody hyperbolic. We apply Theorem D
to conclude that a small deformation of - is also pseudo-Brody hyperbolic. The corollary is
proved. �



Γ-DIMENSION IN FAMILIES 33

7. Lower semi-continuity of Γ-dimension: linear case

In this section, we will prove Theorem C.(ii).

7.1. Regularity of harmonic maps to symmetric spaces in families.

Lemma 7.1. Let Γ be a finitely generated group. Consider the surjective isogeny ? : SL# (C) ×
C∗ → GL# (C) defined by ?(�, C) := C�. Then for any representation r : Γ→ GL# (C), there
exists a finite index subgroup Γ′ of Γ such that r |Γ′ lifts to a representation Γ′→ SL# (C) ×C∗.

Proof. Set � := r(Γ) and define �1 := ?−1(�). Note that ker ? = {(Z8 �, Z−1
8
)}8=1,...,# , where

Z1, . . . , Z# are #-th roots of unity. In particular, these elements are all torsion elements.
By Selberg’s theorem, �1 is virtually torsion-free, and thus there exists a finite index

subgroup�2 of�1 such that�2∩ker ? = {4}. Hence, ? |�2 : �2 → ?(�2) is an isomorphism.
Note that ?(�2) is a finite index subgroup of �.

It follows that Γ′ := r−1(?(�2)) is a finite index subgroup of Γ. We define r′ = (? |�2)−1 ◦
r |Γ′ : Γ′→ �2. Then we have

?2 ◦ r′ = r |Γ′ .
This completes the proof of the lemma. �

Remark 7.2. Since the Γ-dimension of a variety is invariant under étale covers, we can apply
Lemma 7.1 to reduce the proof of Theorems A and C by replacing � with a suitable finite
étale cover. This allows us to assume that the representation c1(�) → GL# (C) lifts to
c1(�) → SL# (C) × C∗.

Proposition 7.3. Let 5 : � → D be a smooth projective family, and let r : c1(�) → SL# (C)
be a simple representation. There exists a r-equivariant continuous map D : �̃ → �, where
� := SL# (C)/SU# is the Riemannian symmetric space of non-compact type associated with
SL# (C) such that
(i) for each C ∈ D, D |

-̃C
: -̃C → � is the unique rC-equivariant harmonic map.

(ii) the map D vary smoothly in C.

Proof. We equip � with a Kähler metric 6. We endow -C with the Kähler metric 6C := 6 |-C
for any C ∈ D, and � the canonical Riemannian metric for Riemannian symmetric space. By
[Cor88], there exists a unique rC-equivariant harmonic map DC : -̃C → �, which is moreover
pluriharmonic. Let D : -̃ → � be the defined by setting D |

-̃C
= DC . This proves Item (i).

Claim 7.4. Let �C : -̃0 → -̃C be the diffeomorphism induced by the �∞-trivialization � →
-0 × D. Then the function DC ◦ �C : -̃0 → � converges uniformly to D0. In particular,
D : �̃ → � is continuous.

Proof. The proof is close to that of Claim 4.30. We abusively denote by 6C the induced
Riemannian metric on -0 via the natural diffeomorphism -0 → -C . By the same arguments as
in (4.9), the energy function C ↦→ {6C�DC◦�C } is continuous. Fix any Y ∈ (0, 1). By a classical
result of Eells-Sampson [ES64], {DC ◦ �C}C∈DY is uniformly Lipschitz continuous.

By (4.9) again, the function C ↦→ {60�DC◦�C } is also continuous and converges to {60�D0}
as C → 0. Hence, DC ◦ �C : -̃0 → � is an energy-minimizing sequence in the sense of
Definition 4.8 with -0 endowed with the fixed Riemannian metric 60.
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Since r is semi-simple, the Zariski closure � of r(c1(�)) is a reductive group. Then
r(c1(�)) does not fix a point at infinity of �. Otherwise, � would be contained in %(C),
where % is a proper parabolic subgroup, which is impossible. By Lemma 4.6, the action
of r(c1(�)) on � is proper. Hence, we can apply Proposition 4.9 to conclude that DC ◦ �C
converges uniformly to a r0-equivariant harmonic map E : -̃0 → � (with respect to the metric
60) as C → 0. By the uniqueness theorem in [Cor88], one has E = D0.
We thus conclude that DC ◦ �C converges uniformly to D0 as C → 0. The same argument also

shows that for any C0 ∈ D, DC ◦�C converges uniformly to DC0 as C → C0. The claim is proved. �

The exponential map of� provides a diffeomorphism betweenR< and�, thereby inducing a
global coordinate system (G1, . . . , G<) for�. Let ΓW

UV
∈ �∞(�) denote the Christoffel symbols

of the Levi-Civita connection on � with respect to this global coordinate system.
We express D = (D1, . . . , D<) in terms of these global coordinates on �. Let Ω ' D= × Dn

be any admissible coordinate as described in Definition 4.26. We use the notation

DUC (I1, . . . , I=) := DU (I1, . . . , I=, C), ∀U = 1, . . . , <.

Since each DC is harmonic, over Ω we have

ΔCD
U
C + ΓUVW (DC)6

8 9̄
C

mD
V
C

mI8

mD
W
C

mĪ 9
= 0. (7.1)

Here, ΔC denotes the Laplacian operator with respect to the metric 6C , and [68 9̄C ]8, 9=1,...,= is the
inverse of the = × =-matrix [〈 m

mI8
, m
mĪ 9
〉6C ]8, 9=1,...,=.

Since the metrics 6C vary smoothly with C, and {6C�DC }C∈DY is uniformly bounded, it follows
from [ES64] that there exists a constant �1 > 0 such that����mDUCmĪ8 (z)

���� ≤ �1,

����mDUCmI8 (z)
���� ≤ �1, (7.2)

for each U = 1, . . . , <, 8 = 1, . . . , =, C ∈ DY, and z ∈ D=.
Since D is continuous, there exists a constant �2 > 0 such that |ΓU

VW
(DC (z)) | ≤ �2 for any

U, V, W ∈ {1, . . . , <}, C ∈ Dn , and z ∈ D=. Fix any ` ∈ (0, 1).
We apply the interior elliptic estimates for the elliptic equations (7.1) (cf. [Sim96, Section

1.7, Lemma 3]) to conclude that there exists a constant �3 > 0 such that for each C ∈ DY and
any U ∈ {1, . . . , <},

��DUC ���1,`;D=3
4

:= sup
z∈D 3

4

|DUC (z) | +
2=∑
9=1

sup
z∈D 3

4

����mDUCmG 9
(z)

���� + 2=∑
9=1

sup
z1,z2∈D=3

4
, z1≠z2

��� mDUCmG 9
(z1) − mDUC

mG 9
(z2)

���`
|z1 − z2 |

≤ �3

(7.3)

where (I1 = G1 + 8G2, . . . , I= = G2=−1 + 8G2=) are the coordinates in D=. Let `′ ∈ ( `2 , `) and
any C0 ∈ DY. Note that the Hölder space �1,` (D=3

4
) is compactly contained in �1,`′ (D=3

4
). Then

for any sequence C8 → C0, after taking a subsequence if necessary, DUC8 converges to some EU

in �1,`′ (D=3
4
). Note that DUC converges uniformly to DUC0 as C → C0. It follows that EU = DUC0 .

Hence DUC8 converges to D
U
C0
in �1,`′ (D=3

4
). By (7.1) together with a bootstrap argument, for any
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positive integer : > 0, DUC8 converges to D
U
C0
in �:,

`

2 (D=1
2
) as 8 → ∞. This proves Item (ii). The

proposition is proved.
�

Remark 7.5. Note that results similar to Proposition 7.3 were obtained in [EL80, Sle22] under
an additional assumption that Γ := r(c1(�)) is a uniform and torsion free lattice in SL# (C),
i.e., ��Γ is a compact Riemannian locally symmetric manifold.

Lemma 7.6. Let g : c1(�) → C∗ be a representation. Consider the natural action C∗ on R
by I.C := C + log |I |. Then there exists a g-equivariant harmonic map D : �̃ → R, which vary
smoothly in C.

Proof. Note that there exists an isomorphism R × U(1) → C∗ defined by (C, I) ↦→ exp(C).I.
Denote by g1 : c1(�) → R and g2 : c1(�) → U(1) be the projections of g according to
the above isomorphism. Then g1 corresponds to a cohomology class _ ∈ �1(�,R). Fix a
Kähler metric 6 on �. By the classical Hodge theory, there exists 1-forms bC on -C , each is
harmonic with respect to the metric 6C and varying smoothly in C, such that their cohomology
class {bC} = ]∗C _, where ]C : -C → � denotes the inclusion map.

We take a smooth section B : D→ �̃ of �̃ → �. Then for each C ∈ D, we define a smooth
map DC (G) :=

∫ G

B(C) c
∗
-C
bC . It follows that the union D : �̃ → R of DC is a continuous map, which

vary smoothly in C. The lemma is proved. �

Theorem 7.7. Let 5 : � → D be a smooth projective family, and let f : c1(�) → GL# (C)
be a semi-simple representation. Then after we replace � by a suitable finite étale cover, for
the flat bundle (�f, �) on� induced by f, there exists a continuous metric ℎ on�f satisfying
the following properties:
(i) the restriction (�f, �, ℎ) |-C is a harmonic bundle for each C ∈ D.
(ii) Writing +C :=�f |-C , the metric ℎ |+C varies smoothly in C.

Proof. We might decompose f into a direct sum of simple representations, and it suffices to
prove the theorem for the case when f is simple. By Lemma 7.1, after we replace � by a
suitable finite étale cover, we may assume that f lifts to a simple representation f′ : c1(�) →
SL# (C) × C∗. Let r : c1(�) → SL# (C) and g : c1(�) → C∗ denote the compositions
of f′ with the first and second projections, respectively, i.e., SL# (C) × C∗ → SL# (C) and
SL# (C) × C∗ → C∗.

By Proposition 7.3 and Lemma 7.6, there exist a continuous r-equivariant map D1 : �̃ →
� and continuous g-equivariant map D2 : �̃ → R such that D1,C = D1 | -̃C : -̃C → � is
pluriharmonic and D2,C = D2 | -̃C : -̃C → R is also pluriharmonic.

Let �# (C) be the space of positive definite hermitian symmetric # × # matrices with
Riemannian metric defined by

〈-,.〉� = tr(�−1-�−1. ), ∀-,. = )��# (C).
Note that there is a natural isometric identification �# (C) ' GL# (C)/U# . Indeed, GL# (C)
acts isometrically and transitively on �# (C) where the action of 6 ∈ GL# (C) is given by
� ↦→ 6�6†. Since U# is the stabilizer of the identity, the map GL# (C)/U# → �# (C)
defined by [6] ↦→ 66† is an isometry. The subspace �# (C)1 consisting of � ∈ �# (C) with
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det� = 1 is a totally geodesic submanifold of �# (C). Moreover, �# (C)1 is invariant by
the action of SL# (C) with SU# being the stabilizer of the identity. Thus, we also have the
isometric identification�# (C)1 ' �.
Observe that

k : �# (C)1 × R→ �# (C)
(�, C) ↦→ 4

C
# �.

is an isometry. We define the action of SL# (C) ×C∗ on�# (C)1×R by setting (6, I).(�, C) :=
(6�6†, C + 2# log |I |). Then k is equivariant, i.e. for any (6, I) ∈ SL# (C) × C∗, we have

k((6, I).(�, C)) = k((6�6†, C + 2# log |I |)) = 6�6†4 C
# |I |2 = (I6).4 C

# � (7.4)

Identifying D1(G) as an element in �# (C)1, we have that D(G) := k(D1(G), 2#D2(G)) =
42D2 (G)D1(G) ∈ �# (C) ' GL# (C)/U# . Since D1 | -̃C and D2 | -̃C are pluriharmonic and k is an
isometry, D |

-̃C
is also pluriharmonic. Note that D is f-equivariant by (7.4). By Proposition 7.3

and Lemma 7.6, D |
-̃C

varies smoothly in C.
Consider the flat bundle �f := �̃ ×f C# induced by f. Then for any G ∈ �, select any

G̃ ∈ c−1
�
(G) and and define the Hermitian metric ℎ on �f by setting ℎG := D(G). Since D is

f-equivariant, this definition provides a well-defined Hermitian metric ℎ on �f. Moreover,
ℎ |-C is the harmonic metric for +C := �f |-C . Since D varies smoothly in C, the restriction ℎ |+C
also varies smoothly in C. Thus, the theorem is proved. �

Remark 7.8. We can use Theorem 7.7 to strengthen Theorem 2.5, showing that lrC varies
smoothly in C. Indeed, let (+C , �C , ℎC) := (�f, �, ℎ) |-C . Decompose �C as �C = ∇C +ΦC , where
∇C is the metric connection associated with (+C , ℎC), andΦC is self-adjoint. By Theorem 7.7.(ii),
ΦC varies smoothly with C.

Next, decomposeΦC asΦC = Φ′C+Φ′′C , whereΦ′C andΦ′′C are the (1, 0)- and (0, 1)-components
of ΦC , respectively. Since both Φ′C and Φ′′C vary smoothly with C, it follows that lrC =√
−1tr(Φ′C ∧Φ′′C ) also varies smoothly with C.

7.2. Semi-canonical form. Let (+, �, ℎ) be a harmonic bundle on a compact Kähler =-fold
- . We define the Laplacian by setting

Δ := ��∗ + �∗�, (7.5)

where �∗ is the adjoint of � with respect to ℎ. Any :-form [ ∈ �: (-,+) with value in + is
called harmonic if Δ([) = 0. The cohomology �•DR(-,+) is defined as the cohomology of
the following complex

0→ �0(-,+) �−→ �1(-,+) �−→ · · · �−→ �2= (-,+).
In [Sim92, Lemma 2.2], it is shown that the natural inclusion

ℋ
: (-,+) → �:

DR(-,+) (7.6)

is an isomorphism, whereℋ: (-,+) denotes the space of +-valued harmonic :-forms.
We assume further that + underlies a real structure, i.e. it is a complexification of a real

local system +R. Let [ ∈ℋ1(-,+) be a harmonic 1-form. We decompose [ = [1,0 + [0,1 into
(1, 0) and (0, 1)-parts, i.e. [1,0 ∈ �1,0(-,+) and [0,1 ∈ �0,1(-,+).
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Lemma 7.9. If U := {[} ∈ �1
DR(-,+R), then we have [1,0 = [0,1. Here [1,0 is the complex

conjugate of [1,0 with respect to the real structure by +R.

Proof. Let f : + → + be the complex conjugate of + with respect to the R-structure by +R.
Then f� = �f. It follows that � ([) = 0. By the definition of �•DR(-,+R), there exists a
�-closed +R-valued real 1-form V such that {V} = U. It follows that

{[} = {V} = {V} = U.
We decompose � = m + m̄ + \ + \∗ such that (m + m̄, ℎ) is a metric connection, and \ + \∗ is

self-adjoint. Then by [Sim92, Lemma 2.12], f�′ = �′′, where �′ := m + \∗ and �′′ := m̄ + \.
Since [ is harmonic, by [Sim92, Lemma 2.2] one has

�′′[ = �′[ = 0.
This implies that

�′′([) = �′([) = 0.
By [Sim92, Lemma 2.2] again, [ ∈ ℋ1(-,+). It follows from (7.6) that [ = [. This implies
the lemma. �

Definition 7.10 (Semi-canonical form). Let (+, �, ℎ) be a harmonic bundle on a compact
Kähler manifold - . For any U ∈ �1

DR(-,+R), let [ ∈ℋ
1(-,+) be the harmonic representative

in U as above. The semi-canonical form associated with U is a smooth real (1, 1)-form on -
defined by

(U :=
√
−1{[1,0, [1,0}ℎ, (7.7)

where {•, •}ℎ denotes the operation of taking the wedge product of differential forms combined
with the inner product of sections of + induced by the metric ℎ.

Note, however, that (U is not necessarily closed or semi-positive. Moreover, it depends on
the rescaling of the harmonic metric ℎ and is therefore referred to as semi-canonical.

Lemma 7.11. Let (+, �, ℎ) be a harmonic bundle on a compact Kähler manifold - such
that the corresponding local system is defined over R, denoted by +R. Let 6 : / → - be a
holomorphic map from another compact Kähler manifold / . If 6∗+R is a trivial local system,
then for any U ∈ �1

DR(-,+R), the (1, 1)-form 6∗(U is closed and semi-positive.

Proof. Let RA := / × RA be the trivial real vector bundle of rank A := rank+ on / . Let ℎ0
be the standard metric on RA , and let �0 be the canonical connection on RA . Note that the
pullback 6∗(+, �, ℎ) is still a harmonic bundle over / . By the unicity of harmonic metrics
in [Cor88], 6∗+R is isomorphic to (RA , �0, ℎ0), up to rescaling ℎ0 by a constant factor. Note
that for harmonic 1-forms, we have 6∗ℋ1(-,+) ⊂ ℋ

1(/, 6∗+) (that is not true for general
harmonic :-forms!). Since 6∗+R is a trivial local system, it follows that 6∗[ ' (b1, . . . , bA),
where b8 ∈ℋ1(/,R). Hence, we have [1,0 ' (b1,0

1 , . . . , b
1,0
A ), which implies that

6∗
√
−1{[1,0, [1,0}ℎ =

√
−1{6∗[1,0, 6∗[1,0}ℎ =

√
−1

A∑
8=1

b
1,0
8
∧ b0,1

8
.

The classical Hodge theory implies that b1,0
8

is a holomorphic 1-form on - that is 3-closed.
Hence 6∗

√
−1{[1,0, [1,0}ℎ is semi-positive and closed. �
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7.3. Semi-canonical forms in families.

Lemma 7.12. Let 5 : � → � be a smooth projective family and let r : c1(�) → GL# (C)
be a semi-simple representation. We apply Lemma 7.1 to replace � by a finite étale cover
such that the conditions for r in Theorem 7.7 are fulfilled. Let (�, �) be the flat bundle
on � induced by r, and let ℎ be the metric for � constructed in Theorem 7.7. Fix some
U ∈ �1

DR(-0, +0). Let UC ∈ �1
DR(-C , +C) be the image of U under the natural isomorphism

�1
DR(-0, +0) → �1

DR(-C , +C). Then for the +C-valued harmonic 1-form [C ∈ ℋ1(-C , +C) such
that {[C} = UC , we have that �C,∗([C) ∈ �1(-0, +0) varies smoothly in C, where �C : -C → -0

is the diffeomorphism induced by the �∞-trivialization �
�∞→ -0 × D. In particular, if r has

image in GL# (R), the semi-canonical forms (UC vary smoothly in C.

Proof. By Theorem 7.7, (�, �, ℎ) |-C is a harmonic bundle corresponding to the representation
rC . Consider the family of Laplacian operators ΔC for (+C , �C , ℎC) defined in (7.5). By
Theorem 7.7, ΔC is a smooth family of formally self-adjoint elliptic operators. Since the
function C ↦→ dim�1

DR(-C , +C) is constant, we apply [Kod05, Theorem 7.4] to conclude that
kerΔC = ℋ

1(-C , +C) varies smoothly. It follows that [C , thus [1,0
C , varies smoothly in C. By

Theorem 7.7.(ii), (UC :=
√
−1{[1,0

C , [
1,0
C }ℎC varies smoothly in C. The lemma is proved. �

7.4. 1-step R-VMHS. We begin by recalling the definition of an R-VMHS of weight length
1. For further properties of this type of R-VMHS, we refer readers to [Car87, Pea00].

Definition 7.13 (R-VMHS). A R-VMHS M of weight length 1 on a complex manifold -
consists of
(i) A real local systemM- of finite type;
(ii) An increasing filtration {0} =W−2 ⊂ W−1 ⊂ W0 =M- of by real sub-local systems;
(iii) A finite decreasing filtration F • by locally free subsheaves ofM := M- ⊗R O- which

satisfies the Griffiths transversality condition:

∇ (F ?) ⊂ Ω1
- ⊗O- F ?−1,

and such thatW and F define an R-MHS on each fiber (M(G),W•(G), F •(G)) at G of
the vector bundleM. Here ∇ is the flat connection onM inherited from the local system
M- .

In what follows, we will denote L8 := W8/W8−1. Let us denote by ℳ the mixed period
domain ofM, and�8 the period domain forℒ8. Then the R-VMHSM induces an R-VHS on
L8 of weight 8 for 8 = −1, 0. Note that there exists a natural affine bundle ℳ → �−1 ×�0.
Consider the R-VHS L := L∗0 ⊗ L−1 on - , which is of weight −1.

Lemma 7.14. Let M be an R-VMHS of weight length 1 on a smooth projective variety - .
Assume that the connection on L−1 ⊕ L0 induced byM is given by

� :=
[
�−1 [

0 �0

]
,

where [ ∈ℋ1(-,L) and [(G) ∈ Ω1,0
-,G
⊗ L−1,0 ⊕Ω0,1

-,G
⊗ L0,−1, with L?,@ denoting the Hodge

(?, @)-subspace of L.
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Let 5 : / → - be a morphism from another smooth projective variety. Let. be a connected
component of / ×- -̃ , and let 6 : . → -̃ be the natural holomorphic map. Let ? : -̃ →ℳ be
the mixed period map, and let c/ : . → / be the covering map. If 5 ∗L8 is trivial for 8 = −1, 0,
then

3 (? ◦ 6) = c∗/ 5 ∗[1,0.

For the semi-canonical form ([ associated with [, c∗
/
5 ∗([ is strictly positive at the points of

. where ? ◦ 6 is immersive.

Proof. Since 5 ∗L8 is trivial for 8 = −1, 0, the composite ? ◦ 6(. ) ⊂ + (�−1, �0), where
+ (�−1, �0) is the fiber of the natural fibration ℳ → �−1 ×�0 at some point �0 ⊕ �−1 ∈
�−1 ×�0. Here �8 is a real Hodge structure of weight 8.

Fix a base point H0 ∈ . . Then for any H ∈ . , the parallel transport of c∗
/
5 ∗∇ along any

smooth path W connecting H0 and H induces a R-linear isomorphism of �−1 ⊕ �0 given by[
1

∫
W
c∗
/
5 ∗[

0 1

]
.

One can check that this does not depend on the choice of W.
Let [ = [1,0 + [0,1 be the decomposition of [ with respect to Ω1,0

-
⊗ L−1,0 ⊕ Ω0,1

-
⊗ L0,−1.

Then [1,0 = [0,1. We have

? ◦ 6(H) − ? ◦ 6(H0) =
[∫
W

c∗/ 5
∗[

]
=

[∫
W

c∗/ 5
∗[1,0

]
,

where
[∫
W
c∗
/
5 ∗[1,0

]
denotes the image of

∫
W
c∗
/
5 ∗[1,0 under the quotient map

Hom(�0, �−1)C → Hom(�0, �−1)C/�0Hom(�0, �−1)C ' ⊕?≤−1Hom(�0, �−1)?,−1−?
C

.

This implies that

3? ◦ 6 = c∗/ 5 ∗[1,0. (7.8)

Since 5 ∗L is a trivial local system, by the same proof as in Lemma 7.11, 5 ∗[ ' (b1, . . . , bA),
where each b8 is a real harmonic 1-form on / . It follows that

5 ∗([ =
√
−1

A∑
8=1

b1,0 ∧ b0,1.

If ? ◦ 6 is immersive at some H ∈ . , then by (7.8), we have c∗
/
5 ∗[1,0(E) ≠ 0 for any non-zero

E ∈ )H. . This is equivalent to that 5 ∗([ is strictly positive at c/ (H). The second assertion
follows. The lemma is proved. �

7.5. Proof of Theorems A and C.(ii). We will apply the tools from the linear Shafarevich
conjecture [EKPR12], combined with the strategy outlined in § 5.2, to prove Theorem C.(ii).

Proposition 7.15. Let - be a smooth projective variety. Define �# ⊳ c1(-) as the intersection
of the kernels of all linear representations c1(-) → GL# (C). Then after replacing - by a
finite étale cover, Shafarevich morphism sh�# : - → Sh�# (-) exists, and there exist
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(a) a family of Zariski dense representations {g8 : c1(-) → � ( 8)}8=1,...,ℓ where each
�8 ⊂ GL# is a reductive group over a non-archimedean local field  8 of characteristic
zero;

(b) a reductive representation r1 : c1(-) → GL#1 (C) underlying a C-VHS L1, that is a
direct sum of representations c1(-) → GL# (C).

(c) A real R-VMHSM on - , that is an extension of a R-VHS L0 by another R-VHS L−1,
with the extension class denoted by U ∈ �1

DR(-,L
∗
0 ⊗ L−1). The weight of L8 is 8 for

8 = −1, 0.
(d) Set L := L∗0 ⊗ L−1. Let [ ∈ ℋ

1(-,L) be the harmonic representative in U. Then
[(G) ∈ Ω1,0

-,G
⊗L−1,0 ⊕Ω0,1

-,G
⊗L0,−1, with L?,@ denoting the Hodge (?, @)-subspace of L.

(e) A (1, 1)-current ) on Sh�# (-) such that ) |* is a strictly positive smooth (1, 1)-form for
some open subset* of Sh�# (-)reg,

such that for some Y > 0, the sum
∑ℓ
8=1 )g8 + lr1 + Y(U = sh∗�#). Here )g8 is the canonical

current of g8, lr1 is the canonical form of r1, and (U is the semi-canonical form of U.

Proof. Let " := "B(c1(-),GL# ) (C) be the character variety of c1(-). By [DYK23, Proof
of Theorem 3.29], there exist
(a) a family of Zariski dense representations {g8 : c1(-) → � ( 8)}8=1,...,ℓ where each

�8 ⊂ GL# is a reductive group over a non-archimedean local field  8 of characteristic
zero;

(b) a reductive representation r1 : c1(-) → GL#1 (C) underlying a C-VHS L1, that is a
direct sum of representations c1(-) → GL# (C);

such that the following properties hold: we define �̃0
"
to be the intersection of the kernels of all

semisimple representations c1(-) → GL# (C). Denote by -̃0
"

:= -̃/�̃0
"
and c0 : -̃0

"
→ -

the covering map. Then the period map of L1 descends to q : -̃0
"
→ �1, where �1 is the

period map of the R-VHS L1. For the holomorphic map

Φ0 : -̃0
"
→

ℓ∏
8=1
Σg8 ×�1

G ↦→ (Bg1 ◦ c0, . . . , Bgℓ ◦ c0, q(G)),
each connected component of the fiber ofΦ0 is compact. Here Bg8 : - → Σg8 is the Katzarkov-
Eyssidieux reduction for g8 (cf. [DYK23] for the definition). By [DYK23, Proof of Theorem
3.29], Φ0 factors through

-̃0
"

A0
"→ (̃0

"
(-) A0→

ℓ∏
8=1
Σg8 ×�1

where A0
"

is a proper surjective holomorphic fibration and A0 is holomorphic map with each
fiber being a discrete set. Moreover, (̃0

"
(-) does not contain compact subvarieties. Therefore,

the Galois group Aut( -̃0
"
/-) induces an action on (̃0

"
(-) which is properly discontinuous,

and such that A0
"
is equivariant with respect to the action by Aut( -̃0

"
/-). By [DYK23, Lemma

3.28], replacing - by a finite étale cover, we can assume that such an action on (̃0
"
(-) is free.
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Taking the quotient of A0
"
by Aut( -̃0

"
/-), we obtain

-̃0
"

-

(̃0
"
(-) Sh0

" (-)

∏ℓ
8=1 Σg8 ×�1

c0

A0
"

sh0
"

@0

A0

Here Sh0
" (-) is called the reductive Shafarevich morphism associated with " .

By [EKPR12, §5.2], there is an R-VMHS M of weight length 1 with the mixed period
domain ℳ (cf. [EKPR12, Lemma 5.4]) and an infinite Galois étale cover c1 : -̃1

"
→ - (cf.

[EKPR12, p. 1575] for the definition) factorizing through c0 : -̃0
"
→ - such that

(a) the mixed period domain descends to k : -̃1
"
→ℳ;

(b) for the holomorphic map

Φ1 : -̃1
"
→

ℓ∏
8=1
Σg8 ×�1 ×ℳ

G ↦→ (Bg1 ◦ c1, . . . , Bgℓ ◦ c1, q(G), k(G)),

each connected component of the fiber of Φ is compact.

Here we abusively use q : -̃1
"
→ �1 to denote by the composite of q : -̃0

"
→ �1 with

-̃1
"
→ -̃0

"
. By [EKPR12, p. 1576], Φ1 factors through

-̃1
"

A1
"→ (̃1

"
(-) A1→

ℓ∏
8=1
Σg8 ×�1 ×ℳ

where A1
"

is a proper surjective holomorphic fibration and A1 is holomorphic map with each
fiber being a discrete set.

By [EKPR12, Lemma 5.7], (̃1
"
(-) does not contain compact subvarieties. Therefore, the

Galois group Aut( -̃1
"
/-) induces an action on (̃1

"
(-) which is properly discontinuous, and

such that A1
"
is equivariant with respect to the action by Aut( -̃1

"
/-). Replacing - by a finite

étale cover, we assume that such an action is free. Taking the quotient of A1
"
by Aut( -̃1

"
/-),
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we obtain:

-̃1
"

- - -̃0
"

(̃1
"
(-) Sh1

" (-) Sh0
" (-) (̃0

"
(-)

∏ℓ
8=1 Σg8 ×�1 ×ℳ

∏ℓ
8=1 Σg8 ×�1

Φ1

c1

A1
"

sh1
" sh0

" A0
"

c0

Φ0
@1

étale

A1

6 @0

étale

A0

(7.9)

By [EKPR12, p. 1549 & Proposition 3.10], Sh1
" is the Shafarevich morphism associated with

(-, �# ). We apply Selberg’s theorem to replace - by a further finite étale cover such that the
monodromy representation ofM has torsion free image. By the construction of sh1

" , for each
fiber / of sh1

" ,M|/ has finite, thus trivial monodromy. ThenM descends to a R-VMHS of
weight length 1 on Sh1

" , which we denote byM′.
Let / be an irreducible component of any fiber of 6 : Sh1

" (-) → Sh0
" (-). Let /̃1

"
be

any connected component of the inverse image @−1
1 (/). Let �−1 ×�0 be the graded period

domain ofℳ. Note that the natural mapℳ → �−1 ×�0 is a holomorphic vector bundle (cf.
[Car87]). Then there exists some % ∈ �−1 ×�0 such that for the fiber + of ℳ → �−1 ×�0

at % ∈ �−1 ×�0, we have k |
/̃1
"

: /̃1
"
→ + . Moreover, @ := k |

/̃1
"

factors as

/̃1
"

sn
+ ′

/̃1
"

+

?

@

where /̃1
"

sn
is the semi-normalization of /̃1

"
,+ ′→ + is a linear injective map from a complex

vector space + ′ and ? is a proper holomorphic map (cf. [EKPR12, p. 1576]). Since A1 has
discrete fibers, and the image of /̃1

"
under the composite map

(̃1
"
(-) A1→

ℓ∏
8=1
Σg8 ×�1 ×ℳ →

ℓ∏
8=1
Σg8 ×�1

is constant, it follows that ? is a finite map. Here
∏ℓ
8=1 Σg8 ×�1 ×ℳ →

∏ℓ
8=1 Σg8 ×�1 is the

natural projection map.
By [EKPR12, Example 2.2.2], the R-VMHSM satisfies the conditions in Lemma 7.14. Let

U ∈ �1
DR(-,L

∗
0 ⊗ L−1) be the extension class defining M, where L−1 ⊕ L0 is the graded

R-VHS ofM. Let (U be the semi-canonical form associated with U defined in (7.7). Since
M = (sh1

")∗M′, there exists a real (1, 1)-form (′U on Sh1
" (-) such that (U = (sh1

")∗(′U . Then
by Lemma 7.14 (′U |/ is closed and semi-positive and is strictly positive over the locus where
@ : /̃1

"
→ + is immersive.

By § 5.2, there exists a semi-positive closed (1, 1)-current )0 with continuous potential on
Sh0

" (-) such that
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(1) One has
)g1 + · · · + )gℓ + lr1 = (sh0

")
∗)0

(2) )0 |Ω is smooth and strictly positive for some open subset Ω ⊂ Sh0
" (-)reg.

Here )g8 is the canonical current for g8 defined in Definition 5.1, and lL is the canonical form
associated with the representation induced by the C-VHS L.
Let / be a general fiber of 6 : Sh1

" (-) → Sh0
" (-) over Ω. Then (′U |/ is semi-positive and

strictly positive at general points of / . This implies that, for a general point I ∈ / , it has a
neighborhood* ⊂ Sh1

" (-)reg such that (6∗)0+Y(′U) |* is a strictly positive smooth (1, 1)-form
(but not necessarily 3-closed). Let ) := 6∗)0 + Y(′U, which is the desired (1, 1)-current in the
proposition. The proof is accomplished. �

Theorem 7.16. Let 5 : � → D be a smooth projective family.
(i) If there exists an almost faithful linear representation r : c1(-) → GL# (C), then

C ↦→ W3 (-C) is a lower semicontinuous function on D.
(ii) If there exists a big representation f : c1(-0) → GL# (C), then -C has big fundamental

group for sufficiently small C.

Proof. We write - for -0. We now apply Proposition 7.15 and use the notations therein
without recalling it. Then after replacing� by some suitable finite étale cover, there exist
(a) a family of Zariski dense representations {g8 : c1(-) → �8 ( 8)}8=1,...,ℓ where each

�8 ⊂ GL# is a reductive group over a non-archimedean local field  8 of characteristic
zero,

(b) a reductive representation r1 : c1(-) → GL#1 (C) underlying a C-VHS L1, that is a
direct sum of representations c1(-) → GL# (C).

(c) A real R-VMHSM on - with torsion free monodromy, that is an extension of a R-VHS
L0 by another R-VHS L−1, with the extension class denoted by U ∈ �1

DR(-,L
∗
0 ⊗ L−1).

The weight of L8 is 8 for 8 = −1, 0. Let A# be the rank ofM.
(d) Set L := L∗0 ⊗ L−1. Let [ ∈ ℋ

1(-,L) be the harmonic representative in U. Then
[(G) ∈ Ω1,0

-,G
⊗ L−1,0 ⊕ Ω0,1

-,G
⊗ L0,−1 for any G ∈ - , with L?,@ denoting the Hodge

(?, @)-subspace of L.
(e) A (1, 1)-current ) on Sh�# (-) such that ) |* is a strictly positive smooth (1, 1)-form for

some open subset * of Sh�# (-)reg, and for some Y > 0, one has
∑ℓ
8=1 )g8 + lr1 + Y(U =

sh∗�#).
Here )g8 is the canonical current of g8, lr1 is the canonical form of r1, and (U is the semi-
canonical form of U.

Let �C : -C → - be the natural diffeomorphism induced by the�∞ trivialization� → -×D.
Define L8,C := �∗C (L8) as the local systems on -C for 8 = −1, 0, 1. Let UC denote the image of U
under the natural isomorphism

�∗C : �1
DR(-,L

∗
0 ⊗ L−1) → �1

DR(-C ,L
∗
0,C ⊗ L−1,C).

Note that UC is the extension class defining MC := �∗CM, which is the extension of L0,C by
L−1,C .
We apply Lemma 7.1 and Theorem 7.7 to replace� by a finite étale cover such that for the

semi-simple local system � on � induced by L∗0 ⊗ L−1, there is a metric ℎ for � such that
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ℎ |� |-C varies smoothly in C. Note that� |-C = L∗0,C⊗L−1,C . By Lemma 7.12, the semi-canonical
form (UC associated with UC vary smoothly in C.

Set < := dim Sh�# (-). By Item (e), there exists an open subset *0 of - such that
(∑ℓ

8=1 )g8 +lr1 +Y(U) |*0 is<-positive in the sense of Definition 5.5. By Claim 5.7, there exists
an open subset Ω of� such that for some X > 0, one has ΩC := Ω ∩ -C ≠ ∅ for C ∈ DX, and

(
ℓ∑
8=1
)g8,C + lr1,C + Y(U,C) |ΩC

is at least <-positive. Here )g8,C is the canonical current of g8,C : c1(-C) → �8 ( 8), lr1,C is the
canonical form of r1,C : c1(-C) → GL#1 (C).

Denote by �#,C the intersection of kernels of all linear representation c1(-C) → GL# (C).
Consider the Shafarevich morphism sh�# ,C : -C → Sh�# ,C (-C), whose existence is ensured
by Proposition 7.15. By the arguments below Claim 5.7, for any smooth fiber / of sh�# ,C ,
(∑ℓ

8=1 )g8,C + lr1,C ) |/ vanishes identically.

Proof of Theorem 7.16.(i): Since there exists an almost faithful linear representation r :
c1(-) → GL# (C), it follows that rC : c1(-C) → GL# (C) is also almost faithful. Then �#,C
is finite, which implies that sh�# ,C : -C → Sh�# ,C (-C) is the Shafarevich morphism of -C for
each C ∈ D. Therefore, for each fiber / of sh�# ,C , Im[c1(/) → c1(-C)] is finite. It follows
thatMC |/ has finite, thus trivial monodromy asM has torsion free monodromy.

Recall that UC ∈ �1(-C ,L∗0,C ⊗ L−1,C) is the extension class definingMC := �∗CM, that is the
extension of L0,C by L−1,C . Thus, UC |/ is also trivial. Hence, by (7.7), (UC |/ is trivial for each
smooth fiber / of sh�# ,C .

Fix any C ∈ DX. We choose an open subset*C of Sh�# ,C (-C)reg such that

(1) sh−1
�# ,C
(*C) → *C is a proper holomorphic submersion.

(2) , := ΩC ∩ sh−1
�# ,C
(*C) is non-empty.

It follows that, (∑ℓ
8=1 )g8,C +lr1,C +Y(U,C) |, is at most<C-positive, where<C := dim Sh�# ,C (-C).

In conclusion, we have <C ≥ <. This yields dim Sh�# ,C (-C) ≥ dim Sh�# ,0 (-0) for any C ∈ DX.
Recall that sh�# ,C is the Shafarevich morphism of -C . This implies that W3 (-C) ≥ W3 (-0) for
any C ∈ DX. Theorem 7.16.(i) is proved.

Proof of Theorem 7.16.(ii): Set #′ := A# + # , where A# is the rank of the R-VMHS
M in Item (c). Let �# ′,C be the intersection of the kernels of all linear representations
c1(-C) → GL# ′ (C). Define a representation f′ : c1(-) → GL# ′ (C), which is the direct sum
of f and the trivial representation c1(-) → GLA# (C). By our definition of �# ′, we have
�# ′ ⊂ kerf′ = kerf.
Since f is big, it follows that sh�# ′ : - → Sh�# ′ (-) and sh�# : - → Sh�# (-) are both

birational morphisms. The same argument shows that �# ′,C ⊂ �#,C for each C ∈ D.
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Thus, for each C, the following factorization map holds, due to the properties of the Shafare-
vich morphism and the universal property of Stein factorization:

-C Sh�# ′,C (-C)

Sh�# ,C (-C)

sh�# ′,C

sh�# ,C

Note that we might have dim Sh�# ′,C (-C) < dim Sh�# ,C (-C) for some C.
Let rM : c1(-) → GLA# (C) be the monodromy representation ofM, which has a torsion-

free image. Let rM,C : c1(-C) → GLA# (C) be the induced representation via the diffeomor-
phism �C : -C → - . Then we have �# ′,C ⊂ ker rM,C . This implies that for each fiber / of
sh�# ′,C , the image rM,C (Im[c1(/) → c1(-C)]) is finite, and thus trivial.

Since UC ∈ �1(-C ,L∗0,C ⊗L−1,C) is the extension class defining the local systemMC := �∗CM,
corresponding to rM,C as an extension of L0,C by L−1,C , we deduce that UC |/ is trivial. By (7.7),
(UC |/ is also trivial for each smooth fiber / of sh�# ′,C . In conclusion, for each smooth fiber /
of sh�# ′,C , (

ℓ∑
8=1
)g8,C + lr1,C + Y(UC

) ��
/
is trivial. (7.10)

Fix any C ∈ DX. We choose an open subset*C of Sh�# ′,C (-C)reg such that:

(1) sh−1
�# ′,C
(*C) → *C is a proper holomorphic submersion.

(2) The open subset, := ΩC ∩ sh−1
�# ′,C
(*C) is non-empty.

Then by (7.10),
(∑ℓ

8=1 )g8,C + lr1,C + Y(UC
) ��
,
is atmost<′C-positive, where<′C := dim Sh�# ′,C (-C).

Recall that

(
ℓ∑
8=1
)g8,C + lr1,C + Y(U,C) |ΩC

is at least <-positive, where < := dim Sh�# (-) = dim - . This implies that <′C = < = dim -C .
Hence sh�# ′,C is a birational morphism for each C ∈ DX. This proves that -C has a big
fundamental group for C ∈ DX. Theorem 7.16.(ii) is proved.

�
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