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Hyperbolicity and fundamental groups of quasi-projective varieties

Ya Deng

(joint work with Benoit Cadorel, Katsutoshi Yamanoi)

The concept of pseudo Picard hyperbolicity and pseudo Brody hyperbolicity has
been introduced for complex algebraic varieties. A complex quasi-projective nor-
mal variety X is said to be pseudo Picard hyperbolic if there exists a proper
Zariski closed subset Z $ X such that any holomorphic map f : D∗ → X from
the punctured disk D∗ with an essential singularity at the origin is contained in
Z. Similarly, X is called pseudo Brody hyperbolic if there exists a proper Zariski
closed subset Z $ X such that any non-constant holomorphic map f : C → X is
contained in Z. It is worth noting that pseudo Picard hyperbolicity implies pseudo
Brody hyperbolicity, which is a weaker form of hyperbolicity.

Another concept that has been studied extensively is the notion of log general
type. A variety X is said to be strongly of log general type if there exists a proper
Zariski closed subset Z $ X such that any closed positive-dimensional subvariety
V of X that is not of log general type is contained in Z.

In a recent paper by Cadorel, Yamanoi, and the reporter [2], the strong version
of the Green-Griffiths-Lang conjecture has been studied for varieties that admit a
big and reductive representation of their (topological) fundamental group π1(X).
This conjecture states that the four hyperbolicity properties, namely, pseudo Pi-
card hyperbolicity, pseudo Brody hyperbolicity, log general type, and strongly of
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log general type are equivalent for a given variety X . We were able to prove this
conjecture for the aforementioned class of varieties.

Theorem 1 ([2, Theorem 0.4]). Let X be a complex smooth quasi-projective
variety and ̺ : π1(X) → GLN (C) be a big and reductive representation. Then
for any automorphism σ ∈ Aut(C/Q), the strong Green-Griffiths-Lang conjecture
holds for the conjugate variety Xσ := X ×σ C, i.e. the following properties are
equivalent:

(1) Xσ is of log general type.
(2) Xσ is strongly of log general type.
(3) Xσ is pseudo Picard hyperbolic.
(4) Xσ is pseudo Brody hyperbolic.

Recall that a representation ̺ : π1(X) → G(C) is said to be big, or generically
large in [10], if for any closed subvariety Z ⊂ X containing a very general point of
X , ̺(Im[π1(Z

norm) → π1(X)]) is infinite, where Znorm denotes the normalization
of Z. It is worth noting that a stronger notion of largeness exists, where ̺ is called
large if ̺(Im[π1(Z

norm) → π1(X)]) is infinite for any closed subvariety Z of X .
We introduce four special subsets ofX that measure the non-hyperbolicity locus

from different perspectives.

Definition 2 (Special subsets). Let X be a smooth quasi-projective variety.

(1) Spsab(X) :=
⋃

f f(A0)
Zar

, where f ranges over all non-constant rational
maps f : A 99K X from all semi-abelian varieties A to X such that f is
regular on a Zariski open subset A0 ⊂ A whose complement A\A0 has
codimension at least two;

(2) Sph(X) :=
⋃

f f(C)
Zar

, where f ranges over all non-constant holomorphic
maps from C to X ;

(3) Sp(X) :=
⋃

V V
Zar

, where V ranges over all positive-dimensional closed
subvarieties of X which are not of log general type;

(4) Spp(X) :=
⋃

f f(D
∗)

Zar
, where f ranges over all holomorphic maps from

the punctured disk D∗ to X with essential singularity at the origin.

Another strong version of the Green-Griffiths-Lang conjecture asserts that the
four special subsets defined in Definition 2 should coincide. We establish this
conjecture under the assumption that π1(X) admits a large and reductive repre-
sentation, as stated in the following theorem.

Theorem 3 ([2, Theorem 0.6]). Let X be a smooth quasi-projective variety and
̺ : π1(X) → GLN (C) be a large and reductive representation. Then for any
automorphism σ ∈ Aut(C/Q),

(a) the four special subsets defined in Definition 2 are the same, i.e.,

Sp(Xσ) = Spsab(X
σ) = Sph(X

σ) = Spp(X
σ).

(b) These special subsets are conjugate under automorphism σ, i.e.,

Sp•(X
σ) = Sp•(X)σ,
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where Sp• denotes any of Sp, Spsab, Sph or Spp.
(c) Sp(Xσ) is a proper Zariski closed subset of Xσ if and only if X is of log general

type.

In [2], we also prove the following result:

Theorem 4 ([2, Theorem 0.1]). Let X be a complex quasi-projective normal
variety and let ̺ : π1(X) → GLN (C) be a big representation such that the Zariski
closure of ̺(π1(X)) is a semisimple algebraic group. Then, for any automorphism
σ ∈ Aut(C/Q), the variety Xσ is strongly of log general type and pseudo Picard
hyperbolic.

We remark that the condition in Theorem 4 is sharp. Theorem 4 are new even
in the case where X is projective. When the variety X in Theorem 4 is projective,
Campana-Claudon-Eyssidieux [5, Theorem 1] proved that X is of general type and
Yamanoi [12, Proposition 2.1] proved that X does not admit Zariski dense entire
curves f : C → X .

It is noteworthy that the condition of bigness for the representations ̺ in The-
orem 4 is not particularly restrictive, as demonstrated by the following result:

Corollary 5 ([2, Corollary 0.2]). Let X be a complex quasi-projective normal
variety and let G be a semisimple algebraic group over C. If ̺ : π1(X) → G(C)
is a Zariski dense representation, then there exist a finite étale cover ν : X̂ → X,

a birational and proper morphism µ : X̂ ′ → X̂, a dominant morphism f : X̂ ′ →
Y with connected general fibers, and a big and Zariski dense representation τ :
π1(Y ) → G(C) such that

(a) f∗τ = (ν ◦ µ)∗̺.
(b) the variety Y is pseudo Picard hyperbolic and strongly of log general type.

In particular, X is neither weakly special nor Brody special.

Note that by Campana [4], a quasi-projective variety X is weakly special if for

any finite étale cover X̂ → X and any birational modification X̂ ′ → X̂ , there exists

no dominant morphism X̂ ′ → Y with Y a positive-dimensional quasi-projective
normal variety of log general type. By [8] a quasi-projective variety is Brody special
if it contains a Zariski dense entire curve.

Corollary 5 generalizes the previous work by Mok [11], Corlette-Simpson [6],
and Campana-Claudon-Eyssidieux [5], in which they proved similar factorisation
results.

On the other hand, Campana’s abelianity conjecture [4, 11.2] predicts that a
smooth quasi-projective variety X that is special or Brody special has a virtually
abelian fundamental group. When a special variety X is projective, it is known
that all linear quotients of π1(X) are virtually abelian (cf. [3, Theorem 7.8]).
The same conclusion is valid for any Brody special smooth projective variety X
(cf. [12, Theorem 1.1]). While it is natural to expect similar results for smooth
quasi-projective varieties, we construct in [2] an example of a quasi-projective
surface that is special and Brody special, whose fundamental group is linear and
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nilpotent but not virtually abelian. This provides a counterexample to Campana’s
conjecture in the general case. In the same work, we prove the following theorem:

Theorem 6 ([2, Theorem 0.8]). Let X be a special or Brody special smooth
quasi-projective variety. Let ̺ : π1(X) → GLN (C) be a linear representation.
Then ̺(π1(X)) is virtually nilpotent.

To prove the above theorems, in [2] we develop new features in non-abelian
Hodge theories in both archimedean and non-archimedean settings, geometric
group theory, and Nevanlinna theory. Along the way, two difficult theorems are
established, which are of significant interest in their own right. One such technique
is a reduction theorem for Zariski dense representations ̺ : π1(X) → G(K), where
G is a reductive algebraic group defined over a non-Archimedean local field K.

Theorem 7 ([2, Theorem 0.11]). Let X be a complex quasi-projective manifold,
and let ̺ : π1(X) → GLN (K) be a reductive representation where K is a non-
archimedean local field. Then there exists a quasi-projective normal variety S̺ and
a dominant morphism s̺ : X → S̺ with connected general fibers, such that for any
connected Zariski closed subset T of X , the following properties are equivalent:

(a) the image ρ(Im[π1(T ) → π1(X)]) is a bounded subgroup of G(K).
(b) For every irreducible component To of T , the image ρ(Im[π1(T

norm
o ) → π1(X)])

is a bounded subgroup of G(K).
(c) The image s̺(T ) is a point.

When X is projective, this theorem was proved in [9, 7]. One of the build-
ing blocks of the proof of Theorem 7 is based on previous results by Brotbek,
Daskalopoulos, Mese, and the reporter [1] on the existence of harmonic mappings
to Bruhat-Tits buildings (an extension of Gromov-Schoen’s theorem to quasi-
projective cases) and the construction of logarithmic symmetric differential forms
via these harmonic mappings.

Another significant building block is the following theorem.

Theorem 8 ([2, Theorem 0.13]). Let X be a quasi-projective variety. Assume
that there is a morphism a : X → A such that dimX = dim a(X) where A is a
semi-abelian variety (e.g., when X has maximal quasi-Albanese dimension). Then
the following properties are equivalent:

(a) X is of log general type.
(b) X is strongly of log general type.
(c) X is pseudo Picard hyperbolic.
(d) X is pseudo Brody hyperbolic.

The proof of Theorem 8 is heavily based on Nevanlinna theory.
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The Riemann-Schottky problem via singularities of theta divisors

Ruijie Yang

(joint work with Christian Schnell)

This talk is about the classical Riemann-Schottky problem: determine which com-
plex principally polarized abelian varieties (p.p.a.v.) arise as Jacobians of complex
curves. This problem has a long history, going back to the work of Riemann, and
there are many results. For a recent summary, see Grushevsky’s survey [8]. More
precisely, in this talk we would like to approach this problem using singularities
of theta divisors, which can be traced back to the work of Andreotti-Mayer [1].
There is a precise question posed by Casalaina-Martin in 2008 [4, Question 4.7].

Question 1. Let (A,Θ) be a principally polarized abelian variety. If (A,Θ) is
indecomposable as p.p.a.v., it is true that

(1) dimSingm(Θ) ≤ dimA− 2m+ 1, ∀m ≥ 2?

Here Singm(Θ) := {x ∈ Θ | multx(Θ) ≥ m}. Moreover, if the equality is achieved
in (1) by any m ≥ 2, is it true that A is either the Jacobian of a hyperelliptic
curve or the intermediate Jacobian of a cubic threefold?

If this question is true, then it implies a conjecture of Debarre, proposed by
Grushevsky [8, Conjecture 5.5] and a conjecture of Grushevsky [8, Conjecture
5.12]. Here are some evidences.

(1) If A = Jac(C) for a smooth projective curve C, then it is true by the Rie-
mann Singularity Theorem and Marten’s work on Brill-Noether varieties.


